Discovery of underlying morphological relations using an agglomerative clustering algorithm

Zacharias Detorakis, G. Tambouratzis
{"title":"Discovery of underlying morphological relations using an agglomerative clustering algorithm","authors":"Zacharias Detorakis, G. Tambouratzis","doi":"10.1145/1456223.1456267","DOIUrl":null,"url":null,"abstract":"This paper presents a hierarchical clustering algorithm aimed at creating groups of stems with similar characteristics. The resulting groups (clusters) are expected to comprise stems belonging to the same inflectional paradigm (e.g. verbs in passive voice) which will aid the creation of a morphological lexicon. A new metric for calculating the distance between the data objects is proposed, that better suits the specific application by addressing problems that may occur due to the limited amount of information from the data. A series of experimental results are also provided, that demonstrate the performance of the algorithm, compare different distance metrics in terms of their effectiveness and assist in choosing appropriate approaches for a number of parameters.","PeriodicalId":309453,"journal":{"name":"International Conference on Soft Computing as Transdisciplinary Science and Technology","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Soft Computing as Transdisciplinary Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1456223.1456267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a hierarchical clustering algorithm aimed at creating groups of stems with similar characteristics. The resulting groups (clusters) are expected to comprise stems belonging to the same inflectional paradigm (e.g. verbs in passive voice) which will aid the creation of a morphological lexicon. A new metric for calculating the distance between the data objects is proposed, that better suits the specific application by addressing problems that may occur due to the limited amount of information from the data. A series of experimental results are also provided, that demonstrate the performance of the algorithm, compare different distance metrics in terms of their effectiveness and assist in choosing appropriate approaches for a number of parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用凝聚聚类算法发现潜在的形态关系
本文提出了一种层次聚类算法,旨在创建具有相似特征的茎群。由此产生的组(簇)应该包含属于相同屈折范式的词干(例如被动语态中的动词),这将有助于形态词典的创建。提出了一种计算数据对象之间距离的新度量,通过解决由于来自数据的信息量有限而可能出现的问题,该度量更适合特定的应用程序。本文还提供了一系列实验结果,证明了该算法的性能,比较了不同距离度量的有效性,并帮助选择适合多个参数的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Novel cache management strategy for semantic caching in mobile environment Evolutionary multiobjective optimization and multiobjective fuzzy system design Network security simulation and evaluation A software based approach for autonomous projectile attitude and position estimation Fatigue level estimation of bill based on feature-selected acoustic energy pattern by using supervised SOM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1