Finding saliency object via an integration approach

Hui Zhong, Xiao Lin, Linhua Jiang
{"title":"Finding saliency object via an integration approach","authors":"Hui Zhong, Xiao Lin, Linhua Jiang","doi":"10.1109/ICSAI.2017.8248286","DOIUrl":null,"url":null,"abstract":"Saliency detection is a hot topic in the community of computer image and vision. In this paper, we present a new saliency detection method. Given an input image, our method first uses Harris corner detection technique to approximately locate the salient region, and then assign the saliency scores to each pixel, getting the center-prior based map. In addition, we employ Bayesian formula to further optimize it, obtaining the center-Bayesian map. On the other hand, we use the image boundary to generate boundary-based map. Finally, we merge them into a saliency map as our final saliency map. A large number of experimental results demonstrate that the proposed algorithm is superior to most existing algorithms.","PeriodicalId":285726,"journal":{"name":"2017 4th International Conference on Systems and Informatics (ICSAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI.2017.8248286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Saliency detection is a hot topic in the community of computer image and vision. In this paper, we present a new saliency detection method. Given an input image, our method first uses Harris corner detection technique to approximately locate the salient region, and then assign the saliency scores to each pixel, getting the center-prior based map. In addition, we employ Bayesian formula to further optimize it, obtaining the center-Bayesian map. On the other hand, we use the image boundary to generate boundary-based map. Finally, we merge them into a saliency map as our final saliency map. A large number of experimental results demonstrate that the proposed algorithm is superior to most existing algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过集成方法寻找显著性对象
显著性检测是计算机图像和视觉领域的研究热点。本文提出了一种新的显著性检测方法。给定输入图像,我们的方法首先使用Harris角点检测技术对显著区域进行近似定位,然后为每个像素分配显著性分数,得到基于中心先验的地图。此外,我们利用贝叶斯公式对其进行进一步优化,得到了中心贝叶斯图。另一方面,我们利用图像边界生成基于边界的地图。最后,我们将它们合并成一个显著性图,作为我们最终的显著性图。大量实验结果表明,该算法优于大多数现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive coverage control with Guaranteed Power Voronoi Diagrams Gray relativity analysis used to track association in passive sonar system Music visualization based on the MIDI specifications for multidimensional polyphonic expression Modeling of a data modification cyber-attack in an IEC 61850 scenario using stochastic colored Petri Nets Four nonlinear multi-input multi-output ADHDP constructions and algorithms based on topology principle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1