Automatic Object Detection Using DBSCAN for Counting Intoxicated Flies in the FLORIDA Assay

Christian Bodenstein, Markus Goetz, Annika Jansen, H. Scholz, M. Riedel
{"title":"Automatic Object Detection Using DBSCAN for Counting Intoxicated Flies in the FLORIDA Assay","authors":"Christian Bodenstein, Markus Goetz, Annika Jansen, H. Scholz, M. Riedel","doi":"10.1109/ICMLA.2016.0133","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an instrumentation and computer vision pipeline that allows automatic object detection on images taken from multiple experimental set ups. We demonstrate the approach by autonomously counting intoxicated flies in the FLORIDA assay. The assay measures the effect of ethanol exposure onto the ability of a vinegar fly Drosophila melanogaster to right itself. The analysis consists of a three-step approach. First, obtaining an image of a large set of individual experiments, second, identify areas containing a single experiment, and third, discover the searched objects within the experiment. For the analysis we facilitate well-known computer vision and machine learning algorithms - namely color segmentation, threshold imaging and DBSCAN. The automation of the experiment enables an unprecedented reproducibility and consistency, while significantly decreasing the manual labor.","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we propose an instrumentation and computer vision pipeline that allows automatic object detection on images taken from multiple experimental set ups. We demonstrate the approach by autonomously counting intoxicated flies in the FLORIDA assay. The assay measures the effect of ethanol exposure onto the ability of a vinegar fly Drosophila melanogaster to right itself. The analysis consists of a three-step approach. First, obtaining an image of a large set of individual experiments, second, identify areas containing a single experiment, and third, discover the searched objects within the experiment. For the analysis we facilitate well-known computer vision and machine learning algorithms - namely color segmentation, threshold imaging and DBSCAN. The automation of the experiment enables an unprecedented reproducibility and consistency, while significantly decreasing the manual labor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用DBSCAN自动目标检测计数佛罗里达实验中的中毒蝇
在本文中,我们提出了一种仪器和计算机视觉管道,可以对从多个实验装置拍摄的图像进行自动目标检测。我们通过在佛罗里达实验中自动计数中毒苍蝇来证明这种方法。该实验测量了乙醇暴露对黑腹果蝇自我纠正能力的影响。分析包括三个步骤。首先,获取大量单个实验的图像,其次,识别包含单个实验的区域,第三,发现实验内的搜索对象。为了进行分析,我们采用了众所周知的计算机视觉和机器学习算法-即颜色分割,阈值成像和DBSCAN。实验的自动化实现了前所未有的重复性和一致性,同时显著减少了手工劳动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Prediction Modelling and Pattern Detection Approach for the First-Episode Psychosis Associated to Cannabis Use An Effective and Efficient Similarity-Matrix-Based Algorithm for Clustering Big Mobile Social Data Time Series Classification Using Time Warping Invariant Echo State Networks Improved Time Series Classification with Representation Diversity and SVM Android Malware Detection: Building Useful Representations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1