Evolving fuzzy model in fault detection system

D. Dovžan
{"title":"Evolving fuzzy model in fault detection system","authors":"D. Dovžan","doi":"10.1109/EAIS.2017.7954828","DOIUrl":null,"url":null,"abstract":"Evolving methods for on-line learning of nonlinear models can play an important role in future monitoring and fault detection systems. The ability to model nonlinear relationships between the measured variables and to adapt the model to changing variable relations can decrease the number of false alarms and ensure a more robust and stable monitoring system. In this paper an example of the waste water treatment process monitoring system based on evolving fuzzy model is presented.","PeriodicalId":286312,"journal":{"name":"2017 Evolving and Adaptive Intelligent Systems (EAIS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Evolving and Adaptive Intelligent Systems (EAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIS.2017.7954828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Evolving methods for on-line learning of nonlinear models can play an important role in future monitoring and fault detection systems. The ability to model nonlinear relationships between the measured variables and to adapt the model to changing variable relations can decrease the number of false alarms and ensure a more robust and stable monitoring system. In this paper an example of the waste water treatment process monitoring system based on evolving fuzzy model is presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
故障检测系统中的演化模糊模型
非线性模型在线学习的演化方法将在未来的监测和故障检测系统中发挥重要作用。对被测变量之间的非线性关系进行建模,并使模型适应变量关系的变化,可以减少误报的数量,确保监测系统更加鲁棒和稳定。本文介绍了一个基于演化模糊模型的污水处理过程监测系统的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Evolving Cloud-based Controller (RECCo) Autonomous anomaly detection Autonomous learning multi-model classifier of 0-Order (ALMMo-0) Granular evolving fuzzy robust feedback linearization Evolving Cauchy possibilistic clustering based on cosine similarity for monitoring cyber systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1