Value Iteration on Multicore Processors

Anuj K. Jain, S. Sahni
{"title":"Value Iteration on Multicore Processors","authors":"Anuj K. Jain, S. Sahni","doi":"10.1109/ISSPIT51521.2020.9408773","DOIUrl":null,"url":null,"abstract":"Value Iteration (VI) is a powerful, though time consuming, approach to solve reinforcement learning problems modeled as Markov Decision Processes (MDPs). In this paper, we explore strategies to run the sate-of-the-art cache efficient algorithm for VI developed by us [1], [2] on a multicore processor. We demonstrate a speedup of up to 2.59 on a 10-core multiprocessor using 20 threads on popular benchmark data. The speedup for the parallelized portion of the computation is up to 5.89.","PeriodicalId":111385,"journal":{"name":"2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"513 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT51521.2020.9408773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Value Iteration (VI) is a powerful, though time consuming, approach to solve reinforcement learning problems modeled as Markov Decision Processes (MDPs). In this paper, we explore strategies to run the sate-of-the-art cache efficient algorithm for VI developed by us [1], [2] on a multicore processor. We demonstrate a speedup of up to 2.59 on a 10-core multiprocessor using 20 threads on popular benchmark data. The speedup for the parallelized portion of the computation is up to 5.89.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多核处理器上的值迭代
值迭代(VI)是一种强大但耗时的方法,用于解决以马尔可夫决策过程(mdp)为模型的强化学习问题。在本文中,我们探讨了在多核处理器上运行由我们[1],[2]开发的最先进的VI缓存高效算法的策略。我们在流行的基准测试数据上使用20个线程,在10核多处理器上演示了高达2.59的加速。计算的并行化部分的加速高达5.89。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance study of CFD Pressure-based solver on HPC Efficient Topology of Multilevel Clustering Algorithm for Underwater Sensor Networks Machine learning applied to diabetes dataset using Quantum versus Classical computation DOAV Estimation Using L-Shaped Antenna Array Configuration Sentiment analysis using an ensemble approach of BiGRU model: A case study of AMIS tweets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1