Importance-weighted the imbalanced data for C-SVM classifier to human activity recognition

M. Abidine, B. Fergani, Laurent Clavier
{"title":"Importance-weighted the imbalanced data for C-SVM classifier to human activity recognition","authors":"M. Abidine, B. Fergani, Laurent Clavier","doi":"10.1109/WOSSPA.2013.6602386","DOIUrl":null,"url":null,"abstract":"The class imbalance problem is one of the new problems that emerged in activity recognition and that caused suboptimal classification performance. To deal this problem, we propose an efficient way of choosing the suitable regularization parameter C of the Soft-Support Vector Machines (C-SVM) method to perform automatic recognition of activities in a smart home environment. We also discuss how they differ when not considering the weights in C-SVM formulation using cross validation and how it affects their performance. Then, we compare C-SVM with Conditional Random Fields (CRF) considered as the reference method. Our experimental results carried out on three real world imbalanced datasets show that C-SVM based our proposed criterion is capable of solving this class imbalance problem by improving the class accuracy of activity classification compared to other methods.","PeriodicalId":417940,"journal":{"name":"2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOSSPA.2013.6602386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The class imbalance problem is one of the new problems that emerged in activity recognition and that caused suboptimal classification performance. To deal this problem, we propose an efficient way of choosing the suitable regularization parameter C of the Soft-Support Vector Machines (C-SVM) method to perform automatic recognition of activities in a smart home environment. We also discuss how they differ when not considering the weights in C-SVM formulation using cross validation and how it affects their performance. Then, we compare C-SVM with Conditional Random Fields (CRF) considered as the reference method. Our experimental results carried out on three real world imbalanced datasets show that C-SVM based our proposed criterion is capable of solving this class imbalance problem by improving the class accuracy of activity classification compared to other methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对C-SVM分类器的不平衡数据进行重要性加权,用于人体活动识别
类不平衡问题是活动识别中出现的新问题之一,它会导致分类性能的次优。为了解决这一问题,我们提出了一种选择合适正则化参数C的软支持向量机(C- svm)方法来实现智能家居环境中活动的自动识别。我们还讨论了当不考虑使用交叉验证的C-SVM公式中的权重时它们是如何不同的,以及它如何影响它们的性能。然后,我们将C-SVM与作为参考方法的条件随机场(CRF)进行比较。我们在三个真实世界的不平衡数据集上进行的实验结果表明,与其他方法相比,基于我们提出的准则的C-SVM能够通过提高活动分类的分类精度来解决这种类别不平衡问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tensor estimation and visualization using dMRI Effect of multi-users and multipaths on the performance of an adaptive serial acquisition scheme for DS/CDMA systems Relay self interference minimisation using tapped filter New procedure in designing 2D-IIR filters based on 2D-FIR filters approximation Empirical mode decomposition based support vector machines for microemboli classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1