Hybrid Quantum Annealing for Larger-than-QPU Lattice-structured Problems

Jack Raymond, R. Stevanovic, William Bernoudy, K. Boothby, Catherine C. McGeoch, A. Berkley, Pau Farré, Joel Pasvolsky, Andrew D. King
{"title":"Hybrid Quantum Annealing for Larger-than-QPU Lattice-structured Problems","authors":"Jack Raymond, R. Stevanovic, William Bernoudy, K. Boothby, Catherine C. McGeoch, A. Berkley, Pau Farré, Joel Pasvolsky, Andrew D. King","doi":"10.1145/3579368","DOIUrl":null,"url":null,"abstract":"Quantum processing units (QPUs) executing annealing algorithms have shown promise in optimization and simulation applications. Hybrid algorithms are a natural bridge to larger applications. We present a simple greedy method for solving larger-than-QPU lattice-structured Ising optimization problems. The method, implemented in the open source D-Wave Hybrid framework, uses a QPU coprocessor operating with generic parameters. Performance is evaluated for standard spin-glass problems on two lattice types with up to 11,616 spin variables, double the size that is directly programmable on any available QPU. The proposed method is shown to converge to low-energy solutions faster than an open source simulated annealing method that is either directly employed or substituted as a coprocessor in the hybrid method. Using newer Advantage QPUs in place of D-Wave 2000Q QPUs is shown to enhance convergence of the hybrid method to low energies and to achieve a lower final energy.","PeriodicalId":365166,"journal":{"name":"ACM Transactions on Quantum Computing","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3579368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Quantum processing units (QPUs) executing annealing algorithms have shown promise in optimization and simulation applications. Hybrid algorithms are a natural bridge to larger applications. We present a simple greedy method for solving larger-than-QPU lattice-structured Ising optimization problems. The method, implemented in the open source D-Wave Hybrid framework, uses a QPU coprocessor operating with generic parameters. Performance is evaluated for standard spin-glass problems on two lattice types with up to 11,616 spin variables, double the size that is directly programmable on any available QPU. The proposed method is shown to converge to low-energy solutions faster than an open source simulated annealing method that is either directly employed or substituted as a coprocessor in the hybrid method. Using newer Advantage QPUs in place of D-Wave 2000Q QPUs is shown to enhance convergence of the hybrid method to low energies and to achieve a lower final energy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大于qpu晶格结构问题的混合量子退火
执行退火算法的量子处理单元(qpu)在优化和模拟应用中显示出前景。混合算法是通往更大应用的天然桥梁。我们提出了一个简单的贪心方法来解决大于qpu的晶格结构的伊辛优化问题。该方法在开源的D-Wave Hybrid框架中实现,使用QPU协处理器操作通用参数。性能评估标准自旋玻璃问题上的两种晶格类型多达11,616个自旋变量,两倍的大小,是直接可编程的任何可用的QPU。结果表明,该方法收敛于低能量解的速度比直接采用或替代混合方法中的协处理器的开源模拟退火方法快。使用较新的Advantage qpu代替D-Wave 2000Q qpu,可以增强混合方法向低能量的收敛性,并实现较低的最终能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revisiting the Mapping of Quantum Circuits: Entering the Multi-Core Era An optimal linear-combination-of-unitaries-based quantum linear system solver Efficient Syndrome Decoder for Heavy Hexagonal QECC via Machine Learning Improving the Efficiency of Quantum Circuits for Information Set Decoding Quantum Bilinear Interpolation Algorithms Based on Geometric Centers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1