In situ bioremediation of perchlorate-contaminated groundwater using a multi-objective parallel evolutionary algorithm

Mark R. Knarr, M. Goltz, G. Lamont, Junqi Huang
{"title":"In situ bioremediation of perchlorate-contaminated groundwater using a multi-objective parallel evolutionary algorithm","authors":"Mark R. Knarr, M. Goltz, G. Lamont, Junqi Huang","doi":"10.1109/CEC.2003.1299864","DOIUrl":null,"url":null,"abstract":"Combining horizontal flow treatment wells (HFTWs) with in situ biodegradation is an innovative approach with the potential to remediate perchlorate-contaminated groundwater. A model has been developed that combines the groundwater flow induced by HFTWs with biodegradation processes that result from using the HFTWs to mix electron donor into perchlorate-contaminated groundwater. The model can be used to select engineering design parameters that optimize performance under given site conditions. In particular, one desires to design a system that 1) maximizes perchlorate destruction, 2) minimizes treatment expense, and 3) attains regulatory limits on downgradient contaminant concentrations. Unfortunately, for a relatively complex technology like in situ bioremediation, system optimization is not straightforward. In this study, a general multi-objective parallel evolutionary algorithm call GENMOP is developed and used to stochastically determine design parameter values (flow rate, well spacing, concentration of injected electron donor, and injection schedule) in order to maximize perchlorate destruction while minimizing cost. Results indicate that the relationship between perchlorate mass removal and operating cost is positively correlated and nonlinear. For equivalent operating times and costs, the solutions show that the technology achieves higher perchlorate mass removals for a site having both higher hydraulic conductivity as well as higher initial perchlorate concentrations.","PeriodicalId":416243,"journal":{"name":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2003.1299864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Combining horizontal flow treatment wells (HFTWs) with in situ biodegradation is an innovative approach with the potential to remediate perchlorate-contaminated groundwater. A model has been developed that combines the groundwater flow induced by HFTWs with biodegradation processes that result from using the HFTWs to mix electron donor into perchlorate-contaminated groundwater. The model can be used to select engineering design parameters that optimize performance under given site conditions. In particular, one desires to design a system that 1) maximizes perchlorate destruction, 2) minimizes treatment expense, and 3) attains regulatory limits on downgradient contaminant concentrations. Unfortunately, for a relatively complex technology like in situ bioremediation, system optimization is not straightforward. In this study, a general multi-objective parallel evolutionary algorithm call GENMOP is developed and used to stochastically determine design parameter values (flow rate, well spacing, concentration of injected electron donor, and injection schedule) in order to maximize perchlorate destruction while minimizing cost. Results indicate that the relationship between perchlorate mass removal and operating cost is positively correlated and nonlinear. For equivalent operating times and costs, the solutions show that the technology achieves higher perchlorate mass removals for a site having both higher hydraulic conductivity as well as higher initial perchlorate concentrations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多目标并行进化算法的高氯酸盐污染地下水原位生物修复
将水平流处理井(HFTWs)与原位生物降解相结合是一种具有修复高氯酸盐污染地下水潜力的创新方法。建立了一个模型,将高氯酸盐污染的地下水与高氯酸盐污染的地下水中混合电子供体所产生的生物降解过程相结合。该模型可用于在给定现场条件下选择优化性能的工程设计参数。特别是,人们希望设计一个系统,1)最大化高氯酸盐破坏,2)最小化处理费用,3)达到下梯度污染物浓度的监管限制。不幸的是,对于像原位生物修复这样相对复杂的技术,系统优化并不简单。在本研究中,开发了一种通用的多目标并行进化算法GENMOP,并将其用于随机确定设计参数值(流量、井距、注入电子供体浓度和注入计划),以最大化高氯酸盐破坏,同时最小化成本。结果表明,高氯酸盐质量去除率与运行成本呈非线性正相关关系。在相同的作业时间和成本下,该解决方案表明,该技术可以在具有较高水力导电性和较高初始高氯酸盐浓度的场地实现更高的高氯酸盐质量去除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Searching oligo sets of human chromosome 12 using evolutionary strategies A nonlinear control system design based on HJB/HJI/FBI equations via differential genetic programming approach Particle swarm optimizers for Pareto optimization with enhanced archiving techniques Epigenetic programming: an approach of embedding epigenetic learning via modification of histones in genetic programming A new particle swarm optimiser for linearly constrained optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1