{"title":"Miscorrection probability beyond the minimum distance","authors":"Yuval Cassuto, Jehoshua Bruck","doi":"10.1109/ISIT.2004.1365561","DOIUrl":null,"url":null,"abstract":"The miscorrection probability of a list decoder is the probability that the decoder will have at least one noncausal codeword in its decoding sphere. Evaluating this probability is important when using a list-decoder as a conventional decoder since in that case we require the list to contain at most one codeword for most of the errors. A lower bound on the miscorrection is the main result. The key ingredient in the proof is a new combinatorial upper bound on the list-size for a general q-ary block code. This bound is tighter than the best known on large alphabets, and it is shown to be very close to the algebraic bound for Reed-Solomon codes. Finally we discuss two known upper bounds on the miscorrection probability and unify them for linear MDS codes.","PeriodicalId":269907,"journal":{"name":"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2004.1365561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The miscorrection probability of a list decoder is the probability that the decoder will have at least one noncausal codeword in its decoding sphere. Evaluating this probability is important when using a list-decoder as a conventional decoder since in that case we require the list to contain at most one codeword for most of the errors. A lower bound on the miscorrection is the main result. The key ingredient in the proof is a new combinatorial upper bound on the list-size for a general q-ary block code. This bound is tighter than the best known on large alphabets, and it is shown to be very close to the algebraic bound for Reed-Solomon codes. Finally we discuss two known upper bounds on the miscorrection probability and unify them for linear MDS codes.