Ranking Interactions for a Curation Task

S. Clematide, Fabio Rinaldi
{"title":"Ranking Interactions for a Curation Task","authors":"S. Clematide, Fabio Rinaldi","doi":"10.1109/ICMLA.2011.119","DOIUrl":null,"url":null,"abstract":"One of the key pieces of information which biomedical text mining systems are expected to extract from the literature are interactions among different types of biomedical entities (proteins, genes, diseases, drugs, etc.). Different types of entities might be considered, for example protein-protein interactions have been extensively studied as part of the Bio Creative competitive evaluations. However, more complex interactions such as those among genes, drugs, and diseases are increasingly of interest. Different databases have been used as reference for the evaluation of extraction and ranking techniques. The aim of this paper is to describe a machine-learning based reranking approach for candidate interactions extracted from the literature. The results are evaluated using data derived from the Pharm GKB database. The importance of a good ranking is particularly evident when the results are applied to support human curators.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

One of the key pieces of information which biomedical text mining systems are expected to extract from the literature are interactions among different types of biomedical entities (proteins, genes, diseases, drugs, etc.). Different types of entities might be considered, for example protein-protein interactions have been extensively studied as part of the Bio Creative competitive evaluations. However, more complex interactions such as those among genes, drugs, and diseases are increasingly of interest. Different databases have been used as reference for the evaluation of extraction and ranking techniques. The aim of this paper is to describe a machine-learning based reranking approach for candidate interactions extracted from the literature. The results are evaluated using data derived from the Pharm GKB database. The importance of a good ranking is particularly evident when the results are applied to support human curators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
排序互动的策展任务
生物医学文本挖掘系统希望从文献中提取的关键信息之一是不同类型生物医学实体(蛋白质、基因、疾病、药物等)之间的相互作用。可以考虑不同类型的实体,例如,作为生物创意竞争评估的一部分,蛋白质-蛋白质相互作用已被广泛研究。然而,更复杂的相互作用,如基因、药物和疾病之间的相互作用越来越引起人们的兴趣。不同的数据库被用来作为评价提取和排序技术的参考。本文的目的是描述一种基于机器学习的重新排序方法,用于从文献中提取候选交互。使用来自Pharm GKB数据库的数据对结果进行评估。当结果被应用于支持人类管理员时,一个好的排名的重要性尤为明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Data-Mining Approach to Travel Price Forecasting L1 vs. L2 Regularization in Text Classification when Learning from Labeled Features Nonlinear RANSAC Optimization for Parameter Estimation with Applications to Phagocyte Transmigration Speech Rating System through Space Mapping Kernel Methods for Minimum Entropy Encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1