M. Van Dyne, L. Woolery, J. Gryzmala-Busse, C. Tsatsoulis
{"title":"Using machine learning and expert systems to predict preterm delivery in pregnant women","authors":"M. Van Dyne, L. Woolery, J. Gryzmala-Busse, C. Tsatsoulis","doi":"10.1109/CAIA.1994.323655","DOIUrl":null,"url":null,"abstract":"Machine learning and statistical analysis were performed on 9,419 perinatal records with the goal of building a prototype expert system that would improve on the current accuracy rates achieved by manual pre-term labor and delivery risk scoring tools. Current manual scoring techniques have reported accuracy rates of 17-38%. The prototype expert system produced in this effort achieve overall accuracy rates of 53%-88% when tested on records that were not used in either statistical analysis or machine learning. Based on the success of this initial effort, the development of a full expert system to assist in pre-term delivery risk decision support, using the methods described in this paper, is planned.<<ETX>>","PeriodicalId":297396,"journal":{"name":"Proceedings of the Tenth Conference on Artificial Intelligence for Applications","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth Conference on Artificial Intelligence for Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIA.1994.323655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Machine learning and statistical analysis were performed on 9,419 perinatal records with the goal of building a prototype expert system that would improve on the current accuracy rates achieved by manual pre-term labor and delivery risk scoring tools. Current manual scoring techniques have reported accuracy rates of 17-38%. The prototype expert system produced in this effort achieve overall accuracy rates of 53%-88% when tested on records that were not used in either statistical analysis or machine learning. Based on the success of this initial effort, the development of a full expert system to assist in pre-term delivery risk decision support, using the methods described in this paper, is planned.<>