Using machine learning and expert systems to predict preterm delivery in pregnant women

M. Van Dyne, L. Woolery, J. Gryzmala-Busse, C. Tsatsoulis
{"title":"Using machine learning and expert systems to predict preterm delivery in pregnant women","authors":"M. Van Dyne, L. Woolery, J. Gryzmala-Busse, C. Tsatsoulis","doi":"10.1109/CAIA.1994.323655","DOIUrl":null,"url":null,"abstract":"Machine learning and statistical analysis were performed on 9,419 perinatal records with the goal of building a prototype expert system that would improve on the current accuracy rates achieved by manual pre-term labor and delivery risk scoring tools. Current manual scoring techniques have reported accuracy rates of 17-38%. The prototype expert system produced in this effort achieve overall accuracy rates of 53%-88% when tested on records that were not used in either statistical analysis or machine learning. Based on the success of this initial effort, the development of a full expert system to assist in pre-term delivery risk decision support, using the methods described in this paper, is planned.<<ETX>>","PeriodicalId":297396,"journal":{"name":"Proceedings of the Tenth Conference on Artificial Intelligence for Applications","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth Conference on Artificial Intelligence for Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIA.1994.323655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Machine learning and statistical analysis were performed on 9,419 perinatal records with the goal of building a prototype expert system that would improve on the current accuracy rates achieved by manual pre-term labor and delivery risk scoring tools. Current manual scoring techniques have reported accuracy rates of 17-38%. The prototype expert system produced in this effort achieve overall accuracy rates of 53%-88% when tested on records that were not used in either statistical analysis or machine learning. Based on the success of this initial effort, the development of a full expert system to assist in pre-term delivery risk decision support, using the methods described in this paper, is planned.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习和专家系统预测孕妇早产
对9419份围产期记录进行了机器学习和统计分析,目的是建立一个原型专家系统,以提高目前人工早产和分娩风险评分工具的准确率。目前人工评分技术的准确率为17-38%。在这项工作中产生的原型专家系统在没有用于统计分析或机器学习的记录上进行测试时,总体准确率达到53%-88%。基于这一初步努力的成功,计划使用本文中描述的方法开发一个完整的专家系统来协助早产风险决策支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OaSiS: integrating safety reasoning for decision support in oncology Memory-based parsing with parallel marker-passing A study of an expert system for interpreting human walking disorders Integrating case-based reasoning, knowledge-based approach and Dijkstra algorithm for route finding Learning control knowledge through cases in schedule optimization problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1