Experimental study on time complexity of GOSCL algorithm for sparse data tables

P. Butka, J. Pócsová, J. Pócs
{"title":"Experimental study on time complexity of GOSCL algorithm for sparse data tables","authors":"P. Butka, J. Pócsová, J. Pócs","doi":"10.1109/SACI.2012.6249984","DOIUrl":null,"url":null,"abstract":"In this paper we provide experimental study on time complexity of GOSCL algorithm according to the sparseness of the input data table. GOSCL is incremental algorithm for the creation of Generalized One-Sided Concept Lattices, which is related to well-known Formal Concept Analysis area, but with the possibility to work with different types of attributes and to produce one-sided concept lattice from the generalized one-sided formal context. Generally, FCA-based algorithms are exponential. However, in practice there are many inputs for which the complexity is reduced. One of the special cases is related to the high number of \"zeros\" (bottom elements) in data table for so-called sparse data matrices, which is characteristic for some inputs like document-term matrix in text-mining analysis. We describe experimentally the influence of sparseness of data tables on time complexity of GOSCL with different distributions of zeros generated artificially randomly or according to the standard text-mining datasets.","PeriodicalId":293436,"journal":{"name":"2012 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"15 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2012.6249984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper we provide experimental study on time complexity of GOSCL algorithm according to the sparseness of the input data table. GOSCL is incremental algorithm for the creation of Generalized One-Sided Concept Lattices, which is related to well-known Formal Concept Analysis area, but with the possibility to work with different types of attributes and to produce one-sided concept lattice from the generalized one-sided formal context. Generally, FCA-based algorithms are exponential. However, in practice there are many inputs for which the complexity is reduced. One of the special cases is related to the high number of "zeros" (bottom elements) in data table for so-called sparse data matrices, which is characteristic for some inputs like document-term matrix in text-mining analysis. We describe experimentally the influence of sparseness of data tables on time complexity of GOSCL with different distributions of zeros generated artificially randomly or according to the standard text-mining datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏数据表GOSCL算法时间复杂度的实验研究
本文根据输入数据表的稀疏性对GOSCL算法的时间复杂度进行了实验研究。GOSCL是一种用于创建广义单侧概念格的增量算法,它与众所周知的形式概念分析领域有关,但可以处理不同类型的属性,并从广义单侧形式上下文中生成单侧概念格。一般来说,基于fca的算法是指数型的。然而,在实践中,有许多输入可以降低复杂性。其中一个特殊情况与所谓的稀疏数据矩阵的数据表中的大量“零”(底部元素)有关,这是文本挖掘分析中的文档术语矩阵等某些输入的特征。我们通过实验描述了数据表的稀疏性对GOSCL的时间复杂度的影响,这些GOSCL具有人工随机生成的零分布和根据标准文本挖掘数据集生成的零分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Software architecture for semantically enhanced composition of geoservices in cadastral systems Fuzzy Rule Interpolation Developer Toolbox Library Long life oriented smart control of heating body A model of translation management systems for multilingual documents Using the Gram-Charlier expansion in power systems reliability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1