Object Tracking via Null-space Discriminative Projections and Sparse Representation

Yue Zheng, Donglei Liu, Q. Ren, Bo Sun, Zhendong Niu
{"title":"Object Tracking via Null-space Discriminative Projections and Sparse Representation","authors":"Yue Zheng, Donglei Liu, Q. Ren, Bo Sun, Zhendong Niu","doi":"10.1145/3177404.3177439","DOIUrl":null,"url":null,"abstract":"The traditional target tracking algorithm based on sparse representation only considers the whole information of the target template without considering the information of the background. Tracking drift is easily happened when the target is disturbed by cluttered background, occlusion and illumination. Aiming at the existing problems, this paper proposes a sparse representation target tracking method based on null-space discriminative projection. On the one hand, the model increases the reconstruction error of the target sample by introducing the null-space discriminative projection method, thus improving the discriminative ability of the algorithm to the target and the background; On the other hand, using the L1 norm as the loss function reduces the sensitivity of the template to the outlier data. In addition, the model designs an online learning algorithm using to update the target tracking template. The tracking algorithm performs the best in the scene with high similarity between target and background. It can also deal with occlusion, illumination changes and other issues. The experimental results show that the proposed method is more stable, reliable and robust than the popular tracking algorithms. The specific experimental results are demonstrated in this paper.","PeriodicalId":133378,"journal":{"name":"Proceedings of the International Conference on Video and Image Processing","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Video and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3177404.3177439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The traditional target tracking algorithm based on sparse representation only considers the whole information of the target template without considering the information of the background. Tracking drift is easily happened when the target is disturbed by cluttered background, occlusion and illumination. Aiming at the existing problems, this paper proposes a sparse representation target tracking method based on null-space discriminative projection. On the one hand, the model increases the reconstruction error of the target sample by introducing the null-space discriminative projection method, thus improving the discriminative ability of the algorithm to the target and the background; On the other hand, using the L1 norm as the loss function reduces the sensitivity of the template to the outlier data. In addition, the model designs an online learning algorithm using to update the target tracking template. The tracking algorithm performs the best in the scene with high similarity between target and background. It can also deal with occlusion, illumination changes and other issues. The experimental results show that the proposed method is more stable, reliable and robust than the popular tracking algorithms. The specific experimental results are demonstrated in this paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于零空间判别投影和稀疏表示的目标跟踪
传统的基于稀疏表示的目标跟踪算法只考虑目标模板的整体信息,没有考虑背景信息。当目标受到杂乱背景、遮挡和光照的干扰时,容易产生跟踪漂移。针对存在的问题,提出了一种基于零空间判别投影的稀疏表示目标跟踪方法。一方面,该模型通过引入零空间判别投影法增加了目标样本的重构误差,从而提高了算法对目标和背景的判别能力;另一方面,使用L1范数作为损失函数降低了模板对离群数据的敏感性。此外,该模型还设计了一种在线学习算法,用于更新目标跟踪模板。在目标与背景相似度较高的场景下,该算法的跟踪效果最好。它还可以处理遮挡,照明变化和其他问题。实验结果表明,该方法比常用的跟踪算法更稳定、可靠和鲁棒。本文对具体的实验结果进行了论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exposing Video Forgeries by Detecting Misaligned Double Compression Weld Defect Detection based on Completed Local Ternary Patterns Faster R-CNN for Marine Organism Detection and Recognition Using Data Augmentation Application Research of the Laser and Digital Image Processing in Bridge Monitoring Signal Processing of Ultrasonic Testing of Hardened Layer Depth Based on Wavelet Transform Theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1