Integrative Information Visualization of Multimodality Neuroimaging Data

Guangyu Zou, Jing Hua, Ming Dong
{"title":"Integrative Information Visualization of Multimodality Neuroimaging Data","authors":"Guangyu Zou, Jing Hua, Ming Dong","doi":"10.1109/PG.2007.59","DOIUrl":null,"url":null,"abstract":"This paper presents a novel integrative information visualization framework for cross-subject neuroimaging data analysis. The framework can integrate multimodal information captured by different imaging modalities and population-based statistical information presented by different subjects. In this framework, accurate registration of cortical structures is the foundation for the information integration across population. We present a non-rigid intersubject brain surface registration method using conformal structure and spherical thin-plate splines. Spherical thin-plate splines are designed to explicitly match prominent homologous landmarks, and meanwhile, interpolate a global deformation field on the spherical domain, registering brain surfaces in a transformed space. Subsequently, an approach for the integrative information fusion and visualization is presented to handle multimodality neuroimaging data. The entire framework demonstrates its usefulness in multimodality neuroimaging data analysis across subjects.","PeriodicalId":376934,"journal":{"name":"15th Pacific Conference on Computer Graphics and Applications (PG'07)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th Pacific Conference on Computer Graphics and Applications (PG'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PG.2007.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents a novel integrative information visualization framework for cross-subject neuroimaging data analysis. The framework can integrate multimodal information captured by different imaging modalities and population-based statistical information presented by different subjects. In this framework, accurate registration of cortical structures is the foundation for the information integration across population. We present a non-rigid intersubject brain surface registration method using conformal structure and spherical thin-plate splines. Spherical thin-plate splines are designed to explicitly match prominent homologous landmarks, and meanwhile, interpolate a global deformation field on the spherical domain, registering brain surfaces in a transformed space. Subsequently, an approach for the integrative information fusion and visualization is presented to handle multimodality neuroimaging data. The entire framework demonstrates its usefulness in multimodality neuroimaging data analysis across subjects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多模态神经影像数据的综合信息可视化
本文提出了一种用于跨学科神经影像学数据分析的新型综合信息可视化框架。该框架可以整合不同成像方式捕获的多模态信息和不同主体提供的基于人群的统计信息。在此框架下,皮质结构的准确配准是跨种群信息整合的基础。我们提出了一种采用共形结构和球面薄板样条的非刚性主体间脑表面配准方法。球面薄板样条被设计为明确匹配突出的同源地标,同时在球面上插值一个全局变形场,在变换后的空间中注册脑表面。在此基础上,提出了一种综合信息融合与可视化的方法来处理多模态神经影像数据。整个框架证明了它在跨主题的多模态神经成像数据分析中的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Volumetric Implicit Surface Data Structure and Its Triangulation Algorithm Applied to Mesh Integration Simple and Efficient Mesh Editing with Consistent Local Frames Visualisation of Implicit Algebraic Curves Fast and Faithful Geometric Algorithm for Detecting Crest Lines on Meshes Radiometric Compensation through Inverse Light Transport
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1