Improving robustness of gene ranking by resampling and permutation based score correction and normalization

Feng Yang, K. Mao
{"title":"Improving robustness of gene ranking by resampling and permutation based score correction and normalization","authors":"Feng Yang, K. Mao","doi":"10.1109/BIBM.2010.5706607","DOIUrl":null,"url":null,"abstract":"Feature ranking, which ranks features via their individual importance, is one of the frequently used feature selection techniques. Traditional feature ranking criteria are apt to produce inconsistent ranking results even with light perturbations in training samples when applied to high dimensional and small-sized gene expression data. A widely used strategy for solving the inconsistencies is the multi-criterion combination. But one problem encountered in combining multiple criteria is the score normalization. In this paper, problems in existing methods are first analyzed, and a new gene importance transformation algorithm is then proposed. Experimental studies on three popular gene expression datasets show that the multi-criterion combination based on the proposed score correction and normalization produces gene rankings with improved robustness.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Feature ranking, which ranks features via their individual importance, is one of the frequently used feature selection techniques. Traditional feature ranking criteria are apt to produce inconsistent ranking results even with light perturbations in training samples when applied to high dimensional and small-sized gene expression data. A widely used strategy for solving the inconsistencies is the multi-criterion combination. But one problem encountered in combining multiple criteria is the score normalization. In this paper, problems in existing methods are first analyzed, and a new gene importance transformation algorithm is then proposed. Experimental studies on three popular gene expression datasets show that the multi-criterion combination based on the proposed score correction and normalization produces gene rankings with improved robustness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过重采样和基于排列的分数校正和归一化提高基因排序的稳健性
特征排序是一种常用的特征选择技术,通过特征的重要性对特征进行排序。传统的特征排序标准在处理高维、小尺寸的基因表达数据时,即使在训练样本中有轻微的扰动,也容易产生不一致的排序结果。一种广泛使用的解决不一致性的策略是多准则组合。但是,在组合多个标准时遇到的一个问题是得分归一化。本文首先分析了现有方法存在的问题,提出了一种新的基因重要度变换算法。对三个流行的基因表达数据集的实验研究表明,基于所提出的分数校正和归一化的多准则组合产生的基因排序具有更好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gene ranking method using text-mining for the identification of disease related genes alns — A searchable and filterable sequence alignment format A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation An accurate, automatic method for markerless alignment of electron tomographic images Unsupervised integration of multiple protein disorder predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1