Crewman Deployment Model for Improving the Resiliency of the Power System

Sneha Gope, Imon Dutta, Kairab Roy, Indrayudh Chakrabarti, D. Bose, C. K. Chanda
{"title":"Crewman Deployment Model for Improving the Resiliency of the Power System","authors":"Sneha Gope, Imon Dutta, Kairab Roy, Indrayudh Chakrabarti, D. Bose, C. K. Chanda","doi":"10.1109/ICICCSP53532.2022.9862400","DOIUrl":null,"url":null,"abstract":"This paper introduces a method to optimize the number of crewmen deployed at various faulty nodes within a city to boost power system resiliency to pre-calamitous values during the post-restorative period. The approach follows a case study wherein data has been created and analyzed and then predictions have been performed using a multivariate linear regression machine learning model and Artificial Neural Network (ANN). The results of both have then been tabulated and compared. The model proposed in this paper will be highly beneficial for power distribution companies because in case of future disasters power distribution companies just need to give the input parameters for the specific area and they will get the optimal number of crewmen required for the restoration of that area.","PeriodicalId":326163,"journal":{"name":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","volume":"231 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICCSP53532.2022.9862400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a method to optimize the number of crewmen deployed at various faulty nodes within a city to boost power system resiliency to pre-calamitous values during the post-restorative period. The approach follows a case study wherein data has been created and analyzed and then predictions have been performed using a multivariate linear regression machine learning model and Artificial Neural Network (ANN). The results of both have then been tabulated and compared. The model proposed in this paper will be highly beneficial for power distribution companies because in case of future disasters power distribution companies just need to give the input parameters for the specific area and they will get the optimal number of crewmen required for the restoration of that area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高电力系统弹性的机组人员配置模型
本文介绍了一种优化部署在城市内各个故障节点上的人员数量的方法,以提高电力系统在恢复后的恢复能力到灾前值。该方法遵循一个案例研究,其中数据已经创建和分析,然后使用多元线性回归机器学习模型和人工神经网络(ANN)进行预测。然后将两者的结果制成表格并进行比较。本文提出的模型对配电公司非常有利,因为在未来发生灾害的情况下,配电公司只需要给出特定区域的输入参数,就可以得到该区域恢复所需的最优船员人数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact on Electrical Distribution Networks with The Integration of Shunt Capacitor Model Using Exhaustive Search Based Load Flow Algorithm A Smart Solar Charge Controller Based on IOT Technology with Hardware Implementation Message from the Chairman, Sree Group Material Properties and Tool selection for Friction Stir Welding: A Review Adversarial Attacks against Machine Learning Classifiers: A Study of Sentiment Classification in Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1