Establishment of Air Quality Forecast Model Based on Deep Learning

R. Guo, Yuanjing Ma, Shuai Wang, Yiming Du, Shihai Wang
{"title":"Establishment of Air Quality Forecast Model Based on Deep Learning","authors":"R. Guo, Yuanjing Ma, Shuai Wang, Yiming Du, Shihai Wang","doi":"10.1109/ICCC51575.2020.9345081","DOIUrl":null,"url":null,"abstract":"According to the existing air quality forecasting model, this paper proposed an air quality forecasting method based on deep learning. By analyzing forecasting data, monitoring data and meteorological data, a new air quality forecasting model in the region is established. The model fully takes into account the time variability and spatial distribution characteristics of air pollutant concentration, and introduces meteorological data as covariates to predict any location in the study area.","PeriodicalId":386048,"journal":{"name":"2020 IEEE 6th International Conference on Computer and Communications (ICCC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 6th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC51575.2020.9345081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

According to the existing air quality forecasting model, this paper proposed an air quality forecasting method based on deep learning. By analyzing forecasting data, monitoring data and meteorological data, a new air quality forecasting model in the region is established. The model fully takes into account the time variability and spatial distribution characteristics of air pollutant concentration, and introduces meteorological data as covariates to predict any location in the study area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的空气质量预测模型的建立
在现有空气质量预测模型的基础上,提出了一种基于深度学习的空气质量预测方法。通过对预报资料、监测资料和气象资料的分析,建立了一种新的区域空气质量预报模型。该模型充分考虑了大气污染物浓度的时间变异性和空间分布特征,并引入气象数据作为协变量对研究区域内任意位置进行预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Safe and Stable Timing Method over Air Interface Based on Multi-Base Station Cooperation Peak to Average Power Ratio (PAPR) Mitigation for Underwater Acoustic OFDM System by Using an Efficient Hybridization Technique Monocular Visual-Inertial Odometry Based on Point and Line Features Block Halftoning for Size-Invariant Visual Cryptography Based on Two-Dimensional Lattices Airborne STAP with Unknown Mutual Coupling for Coprime Sampling Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1