Efficient SNR estimation in OFDM system

Seon Ae Kim, D. An, H. Ryu, Jin-up Kim
{"title":"Efficient SNR estimation in OFDM system","authors":"Seon Ae Kim, D. An, H. Ryu, Jin-up Kim","doi":"10.1109/RWS.2011.5725412","DOIUrl":null,"url":null,"abstract":"It is very important to estimate the signal to noise ratio (SNR) of received signal and to transmit the signal effectively for the modern communication system. The performance of existing non-data-aided (NDA) SNR estimation methods are substantially degraded for high level modulation scheme such as M-ary amplitude and phase shift keying (APSK) or quadrature amplitude modulation (QAM). In this paper, we propose a SNR estimation method which uses zero point auto-correlation of received signal per block and auto/cross- correlation of decision feedback signal in orthogonal frequency division multiplexing (OFDM) system. Proposed method can be studied into two types; Type 1 can estimate SNR by zero point auto-correlation of decision feedback signal based on the second moment property. Type 2 uses both zero point auto-correlation and cross-correlation based on the fourth moment property. In block-by-block reception of OFDM system, these two SNR estimation methods can be possible for the practical implementation due to correlation based the estimation method and they show more stable estimation performance than the previous SNR estimation methods.","PeriodicalId":250672,"journal":{"name":"2011 IEEE Radio and Wireless Symposium","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Radio and Wireless Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS.2011.5725412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

It is very important to estimate the signal to noise ratio (SNR) of received signal and to transmit the signal effectively for the modern communication system. The performance of existing non-data-aided (NDA) SNR estimation methods are substantially degraded for high level modulation scheme such as M-ary amplitude and phase shift keying (APSK) or quadrature amplitude modulation (QAM). In this paper, we propose a SNR estimation method which uses zero point auto-correlation of received signal per block and auto/cross- correlation of decision feedback signal in orthogonal frequency division multiplexing (OFDM) system. Proposed method can be studied into two types; Type 1 can estimate SNR by zero point auto-correlation of decision feedback signal based on the second moment property. Type 2 uses both zero point auto-correlation and cross-correlation based on the fourth moment property. In block-by-block reception of OFDM system, these two SNR estimation methods can be possible for the practical implementation due to correlation based the estimation method and they show more stable estimation performance than the previous SNR estimation methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OFDM系统中有效的信噪比估计
在现代通信系统中,对接收信号的信噪比进行估计,对信号的有效传输具有重要意义。现有的非数据辅助(NDA)信噪比估计方法在高电平调制方案(如M-ary幅度和相移键控(APSK)或正交幅度调制(QAM))下的性能大大降低。在正交频分复用(OFDM)系统中,我们提出了一种利用每块接收信号的零点自相关和判决反馈信号的自/互相关来估计信噪比的方法。提出的方法可分为两类;第一类基于二阶矩特性,通过判决反馈信号的零点自相关估计信噪比。类型2使用零点自相关和基于第四矩属性的互相关。在OFDM分块接收系统中,由于基于估计方法的相关性,这两种信噪比估计方法可以在实际中实现,并且比以往的信噪比估计方法表现出更稳定的估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microwave transversal six-band bandpass planar filter for multi-standard wireless applications Power-efficient inductive link optimization for implantable systems LMS based digital cancellation of second-order TX intermodulation products in homodyne receivers High-speed LED driver for visible light communications with drawing-out of remaining carrier Characteristics of planar monopole antenna on high impedance electromagnetic surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1