Learning Distribution Independent Latent Representation for 3D Face Disentanglement

Zihui Zhang, Cuican Yu, Huibin Li, Jian Sun, Feng Liu
{"title":"Learning Distribution Independent Latent Representation for 3D Face Disentanglement","authors":"Zihui Zhang, Cuican Yu, Huibin Li, Jian Sun, Feng Liu","doi":"10.1109/3DV50981.2020.00095","DOIUrl":null,"url":null,"abstract":"Learning disentangled 3D face shape representation is beneficial to face attribute transfer, generation and recognition, etc. In this paper, we propose a novel distribution independence-based method to learn to decompose 3D face shapes. Specifically, we design a variational auto-encoder with Graph Convolutional Network (GCN), namely Mesh-Encoder, to model the distributions of identity and expression representations via variational inference. To disentangle facial expression and identity, we eliminate correlation of the two distributions, and enforce them to be independent by adversarial training. Extensive experiments show that the proposed approach can achieve state-of-the-art results in 3D face shape decomposition and expression transfer. Though focusing on disentanglement, our method also achieves the reconstruction accuracies comparable to the state-of-the-art 3D face reconstruction methods.","PeriodicalId":293399,"journal":{"name":"2020 International Conference on 3D Vision (3DV)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV50981.2020.00095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Learning disentangled 3D face shape representation is beneficial to face attribute transfer, generation and recognition, etc. In this paper, we propose a novel distribution independence-based method to learn to decompose 3D face shapes. Specifically, we design a variational auto-encoder with Graph Convolutional Network (GCN), namely Mesh-Encoder, to model the distributions of identity and expression representations via variational inference. To disentangle facial expression and identity, we eliminate correlation of the two distributions, and enforce them to be independent by adversarial training. Extensive experiments show that the proposed approach can achieve state-of-the-art results in 3D face shape decomposition and expression transfer. Though focusing on disentanglement, our method also achieves the reconstruction accuracies comparable to the state-of-the-art 3D face reconstruction methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维人脸解纠缠的学习分布独立潜在表征
学习解纠缠的三维人脸形状表示有利于人脸属性的迁移、生成和识别等。本文提出了一种基于分布独立性的三维人脸形状学习分解方法。具体来说,我们设计了一个基于图卷积网络(GCN)的变分自编码器,即Mesh-Encoder,通过变分推理对恒等式和表达式表示的分布进行建模。为了分离面部表情和身份,我们消除了两种分布的相关性,并通过对抗性训练强制它们独立。大量的实验表明,该方法在三维人脸形状分解和表情传递方面取得了较好的效果。虽然我们的方法侧重于解纠缠,但我们的方法也达到了与最先进的3D人脸重建方法相当的重建精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Screen-space Regularization on Differentiable Rasterization Motion Annotation Programs: A Scalable Approach to Annotating Kinematic Articulations in Large 3D Shape Collections Two-Stage Relation Constraint for Semantic Segmentation of Point Clouds Time Shifted IMU Preintegration for Temporal Calibration in Incremental Visual-Inertial Initialization KeystoneDepth: History in 3D
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1