RBF Neural Network Based on Fuzzy Evolution Kalman Filtering and Application in Mine Safety Monitoring

Yong Zhang, Qingdong Du, Shidong Yu, Jeng-Shyang Pan
{"title":"RBF Neural Network Based on Fuzzy Evolution Kalman Filtering and Application in Mine Safety Monitoring","authors":"Yong Zhang, Qingdong Du, Shidong Yu, Jeng-Shyang Pan","doi":"10.1109/HIS.2009.96","DOIUrl":null,"url":null,"abstract":"Fuzzy information fusion methods are adopted widely to resolve the complicated nonlinear problems in recent years. This paper proposes a fusion learning algorithm of radial basis function (RBF) neural network based on fuzzy evolution Kalman filtering. By using this proposed method, monitoring data are extracted and optimized in mine safety monitoring, and Matlab simulation results are analyzed. The results show that this method has feasibility and rapid learning efficiency, which can improve precision and reliability in mine monitoring systems.","PeriodicalId":414085,"journal":{"name":"2009 Ninth International Conference on Hybrid Intelligent Systems","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2009.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Fuzzy information fusion methods are adopted widely to resolve the complicated nonlinear problems in recent years. This paper proposes a fusion learning algorithm of radial basis function (RBF) neural network based on fuzzy evolution Kalman filtering. By using this proposed method, monitoring data are extracted and optimized in mine safety monitoring, and Matlab simulation results are analyzed. The results show that this method has feasibility and rapid learning efficiency, which can improve precision and reliability in mine monitoring systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊演化卡尔曼滤波的RBF神经网络及其在矿山安全监测中的应用
近年来,模糊信息融合方法被广泛用于解决复杂的非线性问题。提出了一种基于模糊进化卡尔曼滤波的径向基函数神经网络融合学习算法。利用该方法对矿井安全监测中的监测数据进行了提取和优化,并对Matlab仿真结果进行了分析。结果表明,该方法具有可行性和快速学习效率,可提高矿井监测系统的精度和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Intelligent Authorization Agent Model in Grid Backing up Truck Control Automatically Based on LOS Study on Generation Companies' Bidding Strategy Based on Hybrid Intelligent Method Sentence Features Fusion for Text Summarization Using Fuzzy Logic Available Bandwidth Estimation in IEEE 802.11 Ad Hoc Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1