Continuous user authentication via unlabeled phone movement patterns

R. Kumar, P. P. Kundu, Diksha Shukla, V. Phoha
{"title":"Continuous user authentication via unlabeled phone movement patterns","authors":"R. Kumar, P. P. Kundu, Diksha Shukla, V. Phoha","doi":"10.1109/BTAS.2017.8272696","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel continuous authentication system for smartphone users. The proposed system entirely relies on unlabeled phone movement patterns collected through smartphone accelerometer. The data was collected in a completely unconstrained environment over five to twelve days. The contexts of phone usage were identified using k-means clustering. Multiple profiles, one for each context, were created for every user. Five machine learning algorithms were employed for classification of genuine and impostors. The performance of the system was evaluated over a diverse population of 57 users. The mean equal error rates achieved by Logistic Regression, Neural Network, kNN, SVM, and Random Forest were 13.7%, 13.5%, 12.1%, 10.7%, and 5.6% respectively. A series of statistical tests were conducted to compare the performance of the classifiers. The suitability of the proposed system for different types of users was also investigated using the failure to enroll policy.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper, we propose a novel continuous authentication system for smartphone users. The proposed system entirely relies on unlabeled phone movement patterns collected through smartphone accelerometer. The data was collected in a completely unconstrained environment over five to twelve days. The contexts of phone usage were identified using k-means clustering. Multiple profiles, one for each context, were created for every user. Five machine learning algorithms were employed for classification of genuine and impostors. The performance of the system was evaluated over a diverse population of 57 users. The mean equal error rates achieved by Logistic Regression, Neural Network, kNN, SVM, and Random Forest were 13.7%, 13.5%, 12.1%, 10.7%, and 5.6% respectively. A series of statistical tests were conducted to compare the performance of the classifiers. The suitability of the proposed system for different types of users was also investigated using the failure to enroll policy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过未标记的手机移动模式进行连续用户认证
在本文中,我们提出了一种新的智能手机用户连续认证系统。拟议中的系统完全依赖于通过智能手机加速度计收集的未标记的手机移动模式。数据是在完全不受约束的环境中收集的,收集时间为5到12天。使用k-均值聚类识别手机使用的上下文。为每个用户创建了多个配置文件,每个上下文一个。采用五种机器学习算法对真品和冒牌货进行分类。系统的性能在57个不同的用户群中进行了评估。Logistic回归、神经网络、kNN、SVM和随机森林的平均等错误率分别为13.7%、13.5%、12.1%、10.7%和5.6%。进行了一系列统计测试来比较分类器的性能。本文还利用注册失败策略研究了所提出的系统对不同类型用户的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy evaluation of handwritten signature verification: Rethinking the random-skilled forgeries dichotomy SSERBC 2017: Sclera segmentation and eye recognition benchmarking competition Age and gender classification using local appearance descriptors from facial components Evaluation of a 3D-aided pose invariant 2D face recognition system Towards pre-alignment of near-infrared iris images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1