Riccardo Mancini, Antonio Ritacco, Giacomo Lanciano, T. Cucinotta
{"title":"XPySom: High-Performance Self-Organizing Maps","authors":"Riccardo Mancini, Antonio Ritacco, Giacomo Lanciano, T. Cucinotta","doi":"10.1109/SBAC-PAD49847.2020.00037","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce XPySom, a new open-source Python implementation of the well-known Self-Organizing Maps (SOM) technique. It is designed to achieve high performance on a single node, exploiting widely available Python libraries for vector processing on multi-core CPUs and GP-GPUs. We present results from an extensive experimental evaluation of XPySom in comparison to widely used open-source SOM implementations, showing that it outperforms the other available alternatives. Indeed, our experimentation carried out using the Extended MNIST open data set shows a speed-up of about 7x and 100x when compared to the best open-source multi-core implementations we could find with multi-core and GP-GPU acceleration, respectively, achieving the same accuracy levels in terms of quantization error.","PeriodicalId":202581,"journal":{"name":"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD49847.2020.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper, we introduce XPySom, a new open-source Python implementation of the well-known Self-Organizing Maps (SOM) technique. It is designed to achieve high performance on a single node, exploiting widely available Python libraries for vector processing on multi-core CPUs and GP-GPUs. We present results from an extensive experimental evaluation of XPySom in comparison to widely used open-source SOM implementations, showing that it outperforms the other available alternatives. Indeed, our experimentation carried out using the Extended MNIST open data set shows a speed-up of about 7x and 100x when compared to the best open-source multi-core implementations we could find with multi-core and GP-GPU acceleration, respectively, achieving the same accuracy levels in terms of quantization error.