Design and implementation of off-grid solar electricity supply for a rural Zambian medical facility

G. Jones, Daniel J. Rogers, J. Stevens, L. Thomas
{"title":"Design and implementation of off-grid solar electricity supply for a rural Zambian medical facility","authors":"G. Jones, Daniel J. Rogers, J. Stevens, L. Thomas","doi":"10.1109/POWERAFRICA.2016.7556574","DOIUrl":null,"url":null,"abstract":"This paper presents the development of an off-grid photovoltaic energy supply in Chongwe District, Zambia, which delivers electricity to a health post and three supporting buildings. The system includes 23.3 square metres of polycrystalline silicon photovoltaic (PV) panel with a peak output of 3.4 kW, and 21.1 kWh of storage using absorbent glass mat (AGM) batteries. The design methodology for the original system, installed in 2012, along with that of a substantial upgrade in 2014, is discussed. Comprehensive system data from before and after the upgrade were recorded, over a period of fifteen months, allowing system performance to be analyzed in detail. The paper concludes with a reflection on the experience gained during the design and delivery of this project, which can be used as a model for the electrification of further health posts across Zambia and other parts of Africa.","PeriodicalId":177444,"journal":{"name":"2016 IEEE PES PowerAfrica","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE PES PowerAfrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERAFRICA.2016.7556574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents the development of an off-grid photovoltaic energy supply in Chongwe District, Zambia, which delivers electricity to a health post and three supporting buildings. The system includes 23.3 square metres of polycrystalline silicon photovoltaic (PV) panel with a peak output of 3.4 kW, and 21.1 kWh of storage using absorbent glass mat (AGM) batteries. The design methodology for the original system, installed in 2012, along with that of a substantial upgrade in 2014, is discussed. Comprehensive system data from before and after the upgrade were recorded, over a period of fifteen months, allowing system performance to be analyzed in detail. The paper concludes with a reflection on the experience gained during the design and delivery of this project, which can be used as a model for the electrification of further health posts across Zambia and other parts of Africa.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为赞比亚农村医疗设施设计和实施离网太阳能供电
本文介绍了赞比亚崇威地区离网光伏供电系统的发展,该系统向一个卫生站和三座配套建筑供电。该系统包括23.3平方米的多晶硅光伏(PV)面板,峰值输出3.4千瓦,以及21.1千瓦时的存储,使用吸收性玻璃垫(AGM)电池。讨论了2012年安装的原始系统的设计方法,以及2014年的大幅升级。在15个月的时间里,记录了升级前后的全面系统数据,从而可以详细分析系统性能。该文件最后总结了在设计和实施该项目期间获得的经验,可作为赞比亚和非洲其他地区卫生站电气化的典范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Critical review of the Malawi community energy model Issues and applications of real-time data from off-grid electrical systems Multi objective dynamic economic emission dispatch with renewable energy and emissions Flexible distribution design in microgrids for dynamic power demand in low-income communities Secured access control architecture consideration for smart grids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1