{"title":"Continuous signal modelling in a multidimensional space of coupling parameters","authors":"L. Brenner","doi":"10.22323/1.336.0228","DOIUrl":null,"url":null,"abstract":"The plans for the second Run of the LHC changes the focus in the Higgs sector from searches to precision measurements. Effective Lagrangians can be used for parameterisation. A signal morphing method is developed to take all parameters into account simultaneously and model interference effects. It provides a continues description of arbitrary physical signal observables such as cross sections or differential distributions in a multidimensional space of coupling parameters. This method is capable of morphing signal distributions and rates based on a minimal orthogonal set of independent base samples and therefore allows to directly fit the coupling parameters that describe the Standard Model and possible non-Standard Model interactions for, for example, the Higgs boson.","PeriodicalId":441384,"journal":{"name":"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.336.0228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The plans for the second Run of the LHC changes the focus in the Higgs sector from searches to precision measurements. Effective Lagrangians can be used for parameterisation. A signal morphing method is developed to take all parameters into account simultaneously and model interference effects. It provides a continues description of arbitrary physical signal observables such as cross sections or differential distributions in a multidimensional space of coupling parameters. This method is capable of morphing signal distributions and rates based on a minimal orthogonal set of independent base samples and therefore allows to directly fit the coupling parameters that describe the Standard Model and possible non-Standard Model interactions for, for example, the Higgs boson.