Exploring sentiment analysis on twitter data

Manju Venugopalan, Deepa Gupta
{"title":"Exploring sentiment analysis on twitter data","authors":"Manju Venugopalan, Deepa Gupta","doi":"10.1109/IC3.2015.7346686","DOIUrl":null,"url":null,"abstract":"The growing popularity of microblogging websites has transformed these into rich resources for sentiment mining. Even though opinion mining has more than a decade of research to boost about, it is mostly confined to the exploration of formal text patterns like online reviews, news articles etc. Exploration of the challenges offered by informal and crisp microblogging have taken roots but there is scope for a large way ahead. The proposed work aims at developing a hybrid model for sentiment classification that explores the tweet specific features and uses domain independent and domain specific lexicons to offer a domain oriented approach and hence analyze and extract the consumer sentiment towards popular smart phone brands over the past few years. The experiments have proved that the results improve by around 2 points on an average over the unigram baseline.","PeriodicalId":217950,"journal":{"name":"2015 Eighth International Conference on Contemporary Computing (IC3)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Eighth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2015.7346686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

The growing popularity of microblogging websites has transformed these into rich resources for sentiment mining. Even though opinion mining has more than a decade of research to boost about, it is mostly confined to the exploration of formal text patterns like online reviews, news articles etc. Exploration of the challenges offered by informal and crisp microblogging have taken roots but there is scope for a large way ahead. The proposed work aims at developing a hybrid model for sentiment classification that explores the tweet specific features and uses domain independent and domain specific lexicons to offer a domain oriented approach and hence analyze and extract the consumer sentiment towards popular smart phone brands over the past few years. The experiments have proved that the results improve by around 2 points on an average over the unigram baseline.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索twitter数据的情感分析
微博网站的日益普及已经将其转化为情感挖掘的丰富资源。尽管意见挖掘已经有十多年的研究可以推进,但它主要局限于对正式文本模式的探索,如在线评论、新闻文章等。对非正式和简洁的微博所带来的挑战的探索已经扎根,但还有很大的发展空间。提出的工作旨在开发一种用于情感分类的混合模型,该模型探索tweet的特定特征,并使用领域独立和领域特定的词汇来提供面向领域的方法,从而分析和提取过去几年消费者对流行智能手机品牌的情感。实验证明,结果比单格基线平均提高了2点左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementing security technique on generic database Pruned feature space for metamorphic malware detection using Markov Blanket Mitigation of desynchronization attack during inter-eNodeB handover key management in LTE Task behaviour inputs to a heterogeneous multiprocessor scheduler Hand written digit recognition system for South Indian languages using artificial neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1