Super-resolution imaging lidar based on Fourier ptychography

Yuming Wang, Hui Zhao, Mingyang Yang, Youshan Qu, XueWu Fan
{"title":"Super-resolution imaging lidar based on Fourier ptychography","authors":"Yuming Wang, Hui Zhao, Mingyang Yang, Youshan Qu, XueWu Fan","doi":"10.1117/12.2604172","DOIUrl":null,"url":null,"abstract":"Traditional imaging lidar exhibits an obvious trade-off between the resolution and the size of its optical system. In order to realize a miniaturized super-resolution (SR) imaging lidar, Fourier ptychography (FP) has been introduced to break through the diffraction limit of the camera lens. FP, derived from synthetic aperture method, is capable of acquiring high resolution and large field-of-view reconstructed images without increasing the aperture size by capturing multiple images with diverse incident angles before computationally combining with phase retrieval algorithm. In this work, a SR imaging lidar system was proposed by using reflective-type FP, which mainly consists of a s-CMOS camera, a Nd:YAG laser, and a 2-D translation stage so as to achieve aperture scanning on the x and y axes. To validate this technique experimentally, a set of images of a positive USAF chrome-on-glass target were obtained for quantitative analysis, and an uneven 1 yuan nickel-on-steel RMB coin was used to simulate the applicability of the SR imaging lidar in practical applications. The observations show that the obtained images based on FP technique have an obvious improvement in resolution, contrast, and clarity. It is worth mentioning that the resolution of these reconstructed images is increased over 3 times in the experiment on the USAF target. Moreover, the images under different apertures were collected, processed and analyzed, which suggest the initial image quality has a non-negligible influence on the reconstructed results. This technique not only improves the performance of the imaging lidar while maintaining low costs, but also bring new vitality in remote image recognition and analysis.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2604172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional imaging lidar exhibits an obvious trade-off between the resolution and the size of its optical system. In order to realize a miniaturized super-resolution (SR) imaging lidar, Fourier ptychography (FP) has been introduced to break through the diffraction limit of the camera lens. FP, derived from synthetic aperture method, is capable of acquiring high resolution and large field-of-view reconstructed images without increasing the aperture size by capturing multiple images with diverse incident angles before computationally combining with phase retrieval algorithm. In this work, a SR imaging lidar system was proposed by using reflective-type FP, which mainly consists of a s-CMOS camera, a Nd:YAG laser, and a 2-D translation stage so as to achieve aperture scanning on the x and y axes. To validate this technique experimentally, a set of images of a positive USAF chrome-on-glass target were obtained for quantitative analysis, and an uneven 1 yuan nickel-on-steel RMB coin was used to simulate the applicability of the SR imaging lidar in practical applications. The observations show that the obtained images based on FP technique have an obvious improvement in resolution, contrast, and clarity. It is worth mentioning that the resolution of these reconstructed images is increased over 3 times in the experiment on the USAF target. Moreover, the images under different apertures were collected, processed and analyzed, which suggest the initial image quality has a non-negligible influence on the reconstructed results. This technique not only improves the performance of the imaging lidar while maintaining low costs, but also bring new vitality in remote image recognition and analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于傅立叶平面摄影的超分辨率成像激光雷达
传统的成像激光雷达在分辨率和光学系统的尺寸之间表现出明显的权衡。为了实现小型化的超分辨率成像激光雷达,引入了傅立叶平面成像技术(FP)来突破相机镜头的衍射极限。FP源于合成孔径法,通过捕获不同入射角的多幅图像,再与相位检索算法进行计算结合,在不增加孔径的情况下获得高分辨率大视场重构图像。本文提出了一种采用反射式FP的SR成像激光雷达系统,该系统主要由s-CMOS相机、Nd:YAG激光器和二维平移台组成,实现x轴和y轴孔径扫描。为了实验验证该技术,获得了一组USAF玻璃上铬正靶图像进行定量分析,并采用不均匀的1元钢上镍人民币硬币模拟SR成像激光雷达在实际应用中的适用性。实验结果表明,基于FP技术获得的图像在分辨率、对比度和清晰度方面都有明显提高。值得一提的是,在美国空军目标上的实验中,这些重建图像的分辨率提高了3倍以上。对不同孔径下的图像进行了采集、处理和分析,结果表明初始图像质量对重构结果的影响不可忽略。该技术不仅在保持低成本的同时提高了成像激光雷达的性能,而且为远程图像识别和分析带来了新的活力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spectral-domain asymptotics for electromagnetic scattering from a point-source excitation target coated with a uniaxial electric anisotropic medium based on physical optics Speckle noise suppression of digital holographic microscopy with diffusion glass rotation Infrared multispectral imaging system based on metasurfaces for two infrared atmospheric windows Thermal behavior of superwetting alumina coated on copper mesh during laser cladding for enhanced oil/water separation Large-range piston error detection technology based on dispersed fringe sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1