Automatic Brain Tissue Segmentation on TOF MRA Image

Ş. K. Özen, M. Aksahin
{"title":"Automatic Brain Tissue Segmentation on TOF MRA Image","authors":"Ş. K. Özen, M. Aksahin","doi":"10.1109/TIPTEKNO50054.2020.9299302","DOIUrl":null,"url":null,"abstract":"For the segmentation of brain vessels from MRA images, brain tissue is used in the head, eye, skull, etc. must be separated from the structures. For this reason, studies are carried out for the segmentation of brain tissue. In this study, the method that automatically segregates brain tissue from magnetic resonance angiography images taken with time of flight (TOF) technique is presented. The method in the study consists of five steps. First of all, the tip contrast values in the image are filtered by anisotropic diffusion filtering method. Parameters of anisotropic diffusion method are determined automatically by the natural image quality evaluator method. Sudden density transitions are detected by applying LoG edge detection filter on the filtered image. It is made ready for image analysis by applying etching on the image with density transitions. According to the conditions determined in image analysis, brain tissue is obtained separated from other head structures. As a result of this study, an easy-to-apply, fast-delivering, high-accuracy automatic algorithm has been introduced.","PeriodicalId":426945,"journal":{"name":"2020 Medical Technologies Congress (TIPTEKNO)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Medical Technologies Congress (TIPTEKNO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIPTEKNO50054.2020.9299302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For the segmentation of brain vessels from MRA images, brain tissue is used in the head, eye, skull, etc. must be separated from the structures. For this reason, studies are carried out for the segmentation of brain tissue. In this study, the method that automatically segregates brain tissue from magnetic resonance angiography images taken with time of flight (TOF) technique is presented. The method in the study consists of five steps. First of all, the tip contrast values in the image are filtered by anisotropic diffusion filtering method. Parameters of anisotropic diffusion method are determined automatically by the natural image quality evaluator method. Sudden density transitions are detected by applying LoG edge detection filter on the filtered image. It is made ready for image analysis by applying etching on the image with density transitions. According to the conditions determined in image analysis, brain tissue is obtained separated from other head structures. As a result of this study, an easy-to-apply, fast-delivering, high-accuracy automatic algorithm has been introduced.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TOF MRA图像的脑组织自动分割
对于从MRA图像中分割脑血管,使用的是脑组织,头部、眼睛、颅骨等必须从结构中分离出来。为此,开展了脑组织分割的研究。本文提出了一种利用飞行时间(TOF)技术从磁共振血管造影图像中自动分离脑组织的方法。本研究的方法包括五个步骤。首先,采用各向异性扩散滤波方法对图像中的尖端对比度值进行滤波。各向异性扩散法的参数由自然图像质量评价器法自动确定。通过对滤波后的图像应用LoG边缘检测滤波器检测密度突变。通过对具有密度过渡的图像进行蚀刻,为图像分析做好了准备。根据图像分析中确定的条件,从其他头部结构中分离出脑组织。在此基础上,提出了一种易于应用、快速交付、高精度的自动算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiclass Classification of Brain Cancer with Machine Learning Algorithms Digital Filter Design Based on ARDUINO and Its Applications Use of Velocity Vectors for Cell Classification Under Acoustic Drifting Forces Development of a Full Face Mask during the COVID-19 Epidemic Spread Period TIPTEKNO 2020 Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1