Review of infrared object detection algorithms for low-light background

Jianguo Wei, Y. Qu, Yanbin Ma
{"title":"Review of infrared object detection algorithms for low-light background","authors":"Jianguo Wei, Y. Qu, Yanbin Ma","doi":"10.1117/12.3001327","DOIUrl":null,"url":null,"abstract":"At present, object detection algorithm using artificial intelligence technology plays an increasingly important role in the field of computer vision, and plays an extremely important role in such practical application scenarios as automatic driving, urban monitoring, national defense, military and medical assistance. Different from visible light imaging, infrared imaging technology uses detectors to measure the infrared radiation difference between the object itself and the background, overcoming the difficulty of low light intensity and realizing infrared object detection in the low-light scene. In this paper, the traditional infrared object detection algorithm for low light background and infrared object detection algorithm based on deep learning are reviewed, and the current representative classical algorithms are compared, and the characteristics of the model combined with the actual application scenarios are analyzed. Finally, the difficulties and challenges that the current infrared object detection task facing are described, and the research direction of infrared object detection is prospected.","PeriodicalId":210802,"journal":{"name":"International Conference on Image Processing and Intelligent Control","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Image Processing and Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3001327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

At present, object detection algorithm using artificial intelligence technology plays an increasingly important role in the field of computer vision, and plays an extremely important role in such practical application scenarios as automatic driving, urban monitoring, national defense, military and medical assistance. Different from visible light imaging, infrared imaging technology uses detectors to measure the infrared radiation difference between the object itself and the background, overcoming the difficulty of low light intensity and realizing infrared object detection in the low-light scene. In this paper, the traditional infrared object detection algorithm for low light background and infrared object detection algorithm based on deep learning are reviewed, and the current representative classical algorithms are compared, and the characteristics of the model combined with the actual application scenarios are analyzed. Finally, the difficulties and challenges that the current infrared object detection task facing are described, and the research direction of infrared object detection is prospected.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低光背景下红外目标检测算法综述
目前,采用人工智能技术的目标检测算法在计算机视觉领域发挥着越来越重要的作用,在自动驾驶、城市监控、国防、军事、医疗救助等实际应用场景中发挥着极其重要的作用。与可见光成像不同,红外成像技术利用探测器测量物体本身与背景之间的红外辐射差,克服了低光强的困难,实现了低光场景下的红外物体检测。本文对传统的低光背景红外目标检测算法和基于深度学习的红外目标检测算法进行了综述,并对目前具有代表性的经典算法进行了比较,并结合实际应用场景分析了模型的特点。最后,阐述了当前红外目标检测任务面临的困难和挑战,并对红外目标检测的研究方向进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of design factors of an interactive interface of intangible cultural heritage APP based on user experience Video description method with fusion of instance-aware temporal features A control system for fine farming of apple trees Chinese image description evaluation method based on target domain semantic constraints YOLO-H: a lightweight object detection framework for helmet wearing detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1