Clustering-based web page prediction

R. Dutta, A. Kundu, Debajyoti Mukhopadhyay
{"title":"Clustering-based web page prediction","authors":"R. Dutta, A. Kundu, Debajyoti Mukhopadhyay","doi":"10.1504/IJKWI.2011.045163","DOIUrl":null,"url":null,"abstract":"Web page prediction plays an important role by predicting and fetching probable web page of next request in advance, resulting in reducing the user latency. The users surf the internet either by entering URL or search for some topic or through link of same topic. For searching and for link prediction, clustering plays an important role. Besides the topic, navigational behaviour is not ignored. This paper proposes a web page prediction model giving significant importance to the user's interest using the clustering technique and the navigational behaviour of the user through Markov model. The clustering technique is used for the accumulation of the similar web pages. Similar web pages of same type reside in the same cluster, the cluster containing web pages have the similarity with respect to topic of the session. The clustering algorithms considered are K-means and K-mediods, where K is determined by HITS algorithm. Finally, the predicted web pages are stored in form of cellular automata to make the system more memory efficient.","PeriodicalId":113936,"journal":{"name":"Int. J. Knowl. Web Intell.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Web Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJKWI.2011.045163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Web page prediction plays an important role by predicting and fetching probable web page of next request in advance, resulting in reducing the user latency. The users surf the internet either by entering URL or search for some topic or through link of same topic. For searching and for link prediction, clustering plays an important role. Besides the topic, navigational behaviour is not ignored. This paper proposes a web page prediction model giving significant importance to the user's interest using the clustering technique and the navigational behaviour of the user through Markov model. The clustering technique is used for the accumulation of the similar web pages. Similar web pages of same type reside in the same cluster, the cluster containing web pages have the similarity with respect to topic of the session. The clustering algorithms considered are K-means and K-mediods, where K is determined by HITS algorithm. Finally, the predicted web pages are stored in form of cellular automata to make the system more memory efficient.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于聚类的网页预测
网页预测通过提前预测和提取下一个请求可能出现的网页,从而减少用户的延迟,起到了重要的作用。用户通过输入URL或搜索某个主题或通过同一主题的链接来上网。对于搜索和链接预测,聚类起着重要的作用。除了主题之外,导航行为也不容忽视。本文利用聚类技术和马尔可夫模型提出了一种重视用户兴趣和用户导航行为的网页预测模型。聚类技术用于相似网页的积累。相同类型的相似网页位于同一簇中,包含网页的簇在会话主题方面具有相似性。考虑的聚类算法为K-means和K- medium,其中K由HITS算法确定。最后,将预测的网页以元胞自动机的形式存储,提高了系统的存储效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MOSSA: a morpho-semantic knowledge extraction system for Arabic information retrieval Learning by redesigning programs: support system for understanding design policy in software design patterns Representations of psychological function based on ontology for collaborative design of peer support services for diabetic patients Learning how to learn with knowledge building process through experiences in new employee training: a case study on learner-mentor interaction model SKACICM a method for development of knowledge management and innovation system e-KnowSphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1