Improving the Performance of Document Similarity by using GPU Parallelism

Il-nam Park, Byunggul Bae, E. Im, Seungshik Kang
{"title":"Improving the Performance of Document Similarity by using GPU Parallelism","authors":"Il-nam Park, Byunggul Bae, E. Im, Seungshik Kang","doi":"10.3745/KIPSTB.2012.19B.4.243","DOIUrl":null,"url":null,"abstract":"In the information retrieval systems like vector model implementation and document clustering, document similarity calculation takes a great part on the overall performance of the system. In this paper, GPU parallelism has been explored to enhance the processing speed of document similarity calculation in a CUDA framework. The proposed method increased the similarity calculation speed almost 15 times better compared to the typical CPU-based framework. It is 5.2 and 3.4 times better than the methods by using CUBLAS and Thrust, respectively.","PeriodicalId":122700,"journal":{"name":"The Kips Transactions:partb","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partb","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTB.2012.19B.4.243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the information retrieval systems like vector model implementation and document clustering, document similarity calculation takes a great part on the overall performance of the system. In this paper, GPU parallelism has been explored to enhance the processing speed of document similarity calculation in a CUDA framework. The proposed method increased the similarity calculation speed almost 15 times better compared to the typical CPU-based framework. It is 5.2 and 3.4 times better than the methods by using CUBLAS and Thrust, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用GPU并行性提高文档相似度的性能
在向量模型实现和文档聚类等信息检索系统中,文档相似度计算在系统整体性能中占有很大的比重。本文探讨了GPU并行性在CUDA框架下提高文档相似度计算的处理速度。与典型的基于cpu的框架相比,该方法将相似度计算速度提高了近15倍。与使用CUBLAS和Thrust的方法相比,其性能分别提高了5.2倍和3.4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Query Expansion Based on Word Graphs Using Pseudo Non-Relevant Documents and Term Proximity Morpheme Recovery Based on Naïve Bayes Model Automatic Identification of the Lumen Border in Intravascular Ultrasound Images Retrieval Model Based on Word Translation Probabilities and the Degree of Association of Query Concept Multidimensional Optimization Model of Music Recommender Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1