{"title":"The design of a low power asynchronous multiplier","authors":"Yijun Liu, S. Furber","doi":"10.1145/1013235.1013310","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the statistics of multiplier operands and identify two characteristics of their distribution that have important consequences for the design of low power multipliers: most inputs are positive, and most inputs have a small number of significant bits. These characteristics are exploited in the design of a multiplier that employs three techniques to minimize power consumption: asynchronous control, a radix-2 algorithm, and split registers. The power savings resulting from the use of these techniques are 55%, 23% and 12% respectively when compared to a synchronous multiplier using a radix-4 modified Booth's algorithm with unified registers. The results are derived from HSPICE simulations using input vectors from benchmark programs. A high-level software model is also used to compare the numbers of transitions in the various models.","PeriodicalId":120002,"journal":{"name":"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1013235.1013310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
In this paper we investigate the statistics of multiplier operands and identify two characteristics of their distribution that have important consequences for the design of low power multipliers: most inputs are positive, and most inputs have a small number of significant bits. These characteristics are exploited in the design of a multiplier that employs three techniques to minimize power consumption: asynchronous control, a radix-2 algorithm, and split registers. The power savings resulting from the use of these techniques are 55%, 23% and 12% respectively when compared to a synchronous multiplier using a radix-4 modified Booth's algorithm with unified registers. The results are derived from HSPICE simulations using input vectors from benchmark programs. A high-level software model is also used to compare the numbers of transitions in the various models.