A New Dynamic Multi-objective Optimization Evolutionary Algorithm

Bojin Zheng
{"title":"A New Dynamic Multi-objective Optimization Evolutionary Algorithm","authors":"Bojin Zheng","doi":"10.1109/ICNC.2007.91","DOIUrl":null,"url":null,"abstract":"Dynamic multi-objective optimization problems are very common in real-world applications. The researches on applying evolutionary algorithm into such problems are attracting more and more researchers. In this paper, a new dynamic multi-objective optimization evolutionary algorithm which utilizes hyper-mutation operator to deal with dynamics and geometrical Pareto selection to deal with multi-objective is introduced. The experimental results show that the performance is satisfactory.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

Abstract

Dynamic multi-objective optimization problems are very common in real-world applications. The researches on applying evolutionary algorithm into such problems are attracting more and more researchers. In this paper, a new dynamic multi-objective optimization evolutionary algorithm which utilizes hyper-mutation operator to deal with dynamics and geometrical Pareto selection to deal with multi-objective is introduced. The experimental results show that the performance is satisfactory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的动态多目标优化进化算法
动态多目标优化问题在实际应用中非常常见。将进化算法应用于此类问题的研究吸引了越来越多的研究者。本文介绍了一种新的动态多目标优化进化算法,该算法利用超突变算子处理动态问题,利用几何Pareto选择处理多目标问题。实验结果表明,该方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Evaluation of Color Patterns Based on Rough Sets Uniqueness of Linear Combinations of Ridge Functions PID Neural Network Temperature Control System in Plastic Injecting-moulding Machine The Study of Membrane Fouling Modeling Method Based on Wavelet Neural Network for Sewage Treatment Membrane Bioreactor Simulation and Research of the PCB Vias Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1