Tests of Lorentz Invariance at the Sudbury Neutrino Observatory

B. Aharmim, S. N. Ahmed, A. Anthony, N. Barros, E. Beier, A. Bellerive, B. Beltrán, M. Bergevin, S. Biller, E. Blucher, R. Bonventre, K. Boudjemline, M. Boulay, B. Cai, E. Callaghan, J. Caravaca, Y. Chan, D. Chauhan, M. Chen, B. Cleveland, G. Cox, X. Dai, H. Deng, F. Descamps, J. Detwiler, P. Doe, G. Doucas, P.-L. Drouin, M. Dunford, S. Elliott, H. C. Evans, G. Ewan, J. Farine, H. Fergani, F. Fleurot, R. Ford, J. Formaggio, N. Gagnon, K. Gilje, J. Goon, K. Graham, E. Guillian, S. Habib, R. L. Hahn, A. Hallin, E. Hallman, P. Harvey, R. Hazama, W. Heintzelman, J. Heise, R. Helmer, A. Hime, C. Howard, M. Huang, P. Jagam, B. Jamieson, N. Jelley, M. Jerkins, C. Kéfélian, K. Keeter, J. Klein, L. Kormos, M. Kos, A. Krüger, C. Kraus, C. Krauss, T. Kutter, C. Kyba, K. Labe, B. Land, R. Lange, A. Latorre, J. Law, I. Lawson, K. Lesko, J. Leslie, I. Levine, J. Loach, R. Maclellan, S. Majerus, H. Mak, J. Maneira, R. Martin, A. Mastbaum, N. McCauley, A. McDonald, S. McGee, M. L. Miller, B. Monreal, J. Monroe, B. Nick
{"title":"Tests of Lorentz Invariance at the Sudbury Neutrino Observatory","authors":"B. Aharmim, S. N. Ahmed, A. Anthony, N. Barros, E. Beier, A. Bellerive, B. Beltrán, M. Bergevin, S. Biller, E. Blucher, R. Bonventre, K. Boudjemline, M. Boulay, B. Cai, E. Callaghan, J. Caravaca, Y. Chan, D. Chauhan, M. Chen, B. Cleveland, G. Cox, X. Dai, H. Deng, F. Descamps, J. Detwiler, P. Doe, G. Doucas, P.-L. Drouin, M. Dunford, S. Elliott, H. C. Evans, G. Ewan, J. Farine, H. Fergani, F. Fleurot, R. Ford, J. Formaggio, N. Gagnon, K. Gilje, J. Goon, K. Graham, E. Guillian, S. Habib, R. L. Hahn, A. Hallin, E. Hallman, P. Harvey, R. Hazama, W. Heintzelman, J. Heise, R. Helmer, A. Hime, C. Howard, M. Huang, P. Jagam, B. Jamieson, N. Jelley, M. Jerkins, C. Kéfélian, K. Keeter, J. Klein, L. Kormos, M. Kos, A. Krüger, C. Kraus, C. Krauss, T. Kutter, C. Kyba, K. Labe, B. Land, R. Lange, A. Latorre, J. Law, I. Lawson, K. Lesko, J. Leslie, I. Levine, J. Loach, R. Maclellan, S. Majerus, H. Mak, J. Maneira, R. Martin, A. Mastbaum, N. McCauley, A. McDonald, S. McGee, M. L. Miller, B. Monreal, J. Monroe, B. Nick","doi":"10.1103/PhysRevD.98.112013","DOIUrl":null,"url":null,"abstract":"Experimental tests of Lorentz symmetry in systems of all types are critical for ensuring that the basic assumptions of physics are well founded. Data from all phases of the Sudbury Neutrino Observatory, a kiloton-scale heavy water Cherenkov detector, are analyzed for possible violations of Lorentz symmetry in the neutrino sector. Such violations would appear as one of eight possible signal types in the detector: six seasonal variations in the solar electron neutrino survival probability differing in energy and time dependence and two shape changes to the oscillated solar neutrino energy spectrum. No evidence for such signals is observed, and limits on the size of such effects are established in the framework of the standard model extension, including 38 limits on previously unconstrained operators and improved limits on 16 additional operators. This makes limits on all minimal, Dirac-type Lorentz violating operators in the neutrino sector available for the first time.","PeriodicalId":104099,"journal":{"name":"CPT and Lorentz Symmetry","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT and Lorentz Symmetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevD.98.112013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Experimental tests of Lorentz symmetry in systems of all types are critical for ensuring that the basic assumptions of physics are well founded. Data from all phases of the Sudbury Neutrino Observatory, a kiloton-scale heavy water Cherenkov detector, are analyzed for possible violations of Lorentz symmetry in the neutrino sector. Such violations would appear as one of eight possible signal types in the detector: six seasonal variations in the solar electron neutrino survival probability differing in energy and time dependence and two shape changes to the oscillated solar neutrino energy spectrum. No evidence for such signals is observed, and limits on the size of such effects are established in the framework of the standard model extension, including 38 limits on previously unconstrained operators and improved limits on 16 additional operators. This makes limits on all minimal, Dirac-type Lorentz violating operators in the neutrino sector available for the first time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在萨德伯里中微子天文台测试洛伦兹不变性
在所有类型的系统中对洛伦兹对称的实验测试对于确保物理学的基本假设是建立良好的至关重要的。来自萨德伯里中微子天文台所有相位的数据,一个千吨级重水切伦科夫探测器,分析了中微子扇区可能违反洛伦兹对称的情况。这种违反将在探测器中表现为八种可能的信号类型之一:太阳电子中微子存活概率的六种季节性变化,其能量和时间依赖性不同,以及振荡的太阳中微子能谱的两种形状变化。没有观察到此类信号的证据,并且在标准模型扩展的框架中建立了对此类效应大小的限制,包括对先前不受约束的算子的38个限制和对16个附加算子的改进限制。这使得中微子扇区中所有最小的狄拉克型洛伦兹违反算子的限制首次成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Renormalization Group Ambiguities in the SME Positronium Gravitation: The QUPLAS Roadmap Lorentz Violation from Torsion κ-Deformed Complex Fields, (Discrete) Symmetries, and Charges New Limits on Lorentz and CPT Symmetry Through 50 Gravitational-Wave Events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1