{"title":"FlowK: Information Flow Control for the Cloud","authors":"Thomas Pasquier, J. Bacon, D. Eyers","doi":"10.1109/CloudCom.2014.11","DOIUrl":null,"url":null,"abstract":"Security concerns are widely seen as an obstacle to the adoption of cloud computing solutions and although a wealth of law and regulation has emerged, the technical basis for enforcing and demonstrating compliance lags behind. Our Cloud Safety Net project aims to show that Information Flow Control (IFC) can augment existing security mechanisms and provide continuous enforcement of extended. Finer-grained application-level security policy in the cloud. We present FlowK, a loadable kernel module for Linux, as part of a proof of concept that IFC can be provided for cloud computing. Following the principle of policy-mechanism separation, IFC policy is assumed to be expressed at application level and FlowK provides mechanisms to enforce IFC policy at runtime. FlowK's design minimises the changes required to existing software when IFC is provided. To show how FlowK can be integrated with cloud software we have designed and evaluated a framework for deploying IFC-aware web applications, suitable for use in a PaaS cloud.","PeriodicalId":249306,"journal":{"name":"2014 IEEE 6th International Conference on Cloud Computing Technology and Science","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 6th International Conference on Cloud Computing Technology and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudCom.2014.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
Security concerns are widely seen as an obstacle to the adoption of cloud computing solutions and although a wealth of law and regulation has emerged, the technical basis for enforcing and demonstrating compliance lags behind. Our Cloud Safety Net project aims to show that Information Flow Control (IFC) can augment existing security mechanisms and provide continuous enforcement of extended. Finer-grained application-level security policy in the cloud. We present FlowK, a loadable kernel module for Linux, as part of a proof of concept that IFC can be provided for cloud computing. Following the principle of policy-mechanism separation, IFC policy is assumed to be expressed at application level and FlowK provides mechanisms to enforce IFC policy at runtime. FlowK's design minimises the changes required to existing software when IFC is provided. To show how FlowK can be integrated with cloud software we have designed and evaluated a framework for deploying IFC-aware web applications, suitable for use in a PaaS cloud.