{"title":"Linear system identification from non-stationary cross-sectional data","authors":"R. Goodrich, P. Caines","doi":"10.1109/CDC.1978.267933","DOIUrl":null,"url":null,"abstract":"The identification of time invariant linear stochastic systems from cross-sectional data on non-stationary system behavior is considered. A strong consistency and asymptotic normality result for maximum likelihood and prediction error estimates of the system parameters, system and measurement noise covariances and the initial state covariance is proven. A new identifiability property for the system model is defined and appears in the set of conditions for this result. The non-stationary stochastic realization (i.e., covariance factorization) theorem in [1] describes sufficient conditions for the identifiability property to hold. An application illustrating the use of a computer program implementing the identification method is presented.","PeriodicalId":375119,"journal":{"name":"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1978.267933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53
Abstract
The identification of time invariant linear stochastic systems from cross-sectional data on non-stationary system behavior is considered. A strong consistency and asymptotic normality result for maximum likelihood and prediction error estimates of the system parameters, system and measurement noise covariances and the initial state covariance is proven. A new identifiability property for the system model is defined and appears in the set of conditions for this result. The non-stationary stochastic realization (i.e., covariance factorization) theorem in [1] describes sufficient conditions for the identifiability property to hold. An application illustrating the use of a computer program implementing the identification method is presented.