Linear system identification from non-stationary cross-sectional data

R. Goodrich, P. Caines
{"title":"Linear system identification from non-stationary cross-sectional data","authors":"R. Goodrich, P. Caines","doi":"10.1109/CDC.1978.267933","DOIUrl":null,"url":null,"abstract":"The identification of time invariant linear stochastic systems from cross-sectional data on non-stationary system behavior is considered. A strong consistency and asymptotic normality result for maximum likelihood and prediction error estimates of the system parameters, system and measurement noise covariances and the initial state covariance is proven. A new identifiability property for the system model is defined and appears in the set of conditions for this result. The non-stationary stochastic realization (i.e., covariance factorization) theorem in [1] describes sufficient conditions for the identifiability property to hold. An application illustrating the use of a computer program implementing the identification method is presented.","PeriodicalId":375119,"journal":{"name":"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1978.267933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

The identification of time invariant linear stochastic systems from cross-sectional data on non-stationary system behavior is considered. A strong consistency and asymptotic normality result for maximum likelihood and prediction error estimates of the system parameters, system and measurement noise covariances and the initial state covariance is proven. A new identifiability property for the system model is defined and appears in the set of conditions for this result. The non-stationary stochastic realization (i.e., covariance factorization) theorem in [1] describes sufficient conditions for the identifiability property to hold. An application illustrating the use of a computer program implementing the identification method is presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非平稳横截面数据的线性系统辨识
研究了基于非平稳系统行为的截面数据的时不变线性随机系统辨识问题。证明了系统参数、系统和测量噪声协方差以及初始状态协方差的极大似然估计和预测误差估计具有强相合性和渐近正态性。定义了系统模型的一个新的可识别性属性,并出现在该结果的条件集中。[1]中的非平稳随机实现(即协方差分解)定理描述了可辨识性成立的充分条件。给出了一个应用实例,说明了如何使用计算机程序来实现该识别方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Properties of the system matrix of a generalized state-space system A gradient technique for general buffer storage design in a production line State estimation under uncertain observations with unknown statistics Perturbation of controllable systems Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1