SOSPD Controllers Tuning by Means of an Evolutionary Algorithm

Jesús-Antonio Hernández-Riveros, J. Urrea-Quintero
{"title":"SOSPD Controllers Tuning by Means of an Evolutionary Algorithm","authors":"Jesús-Antonio Hernández-Riveros, J. Urrea-Quintero","doi":"10.4018/ijncr.2014040103","DOIUrl":null,"url":null,"abstract":"The Proportional Integral Derivative (PID) controller is the most widely used industrial device to monitoring and controlling processes. There are numerous methods for estimating the controller parameters, in general, resolving particular cases. Current trends in parameter estimation minimize an integral performance criterion. Therefore, the calculation of the controller parameters is proposed as an optimization problem. Although there are alternatives to the traditional rules of tuning, there is not yet a study showing that the use of heuristic algorithms it is indeed better than using the classic methods of optimal tuning. In this paper, the evolutionary algorithm MAGO is used as a tool to optimize the controller parameters. The procedure is applied to a range of standard plants modeled as a Second Order System plus Time Delay. Better results than traditional methods of optimal tuning, regardless of the operating mode of the controller, are yielded.","PeriodicalId":369881,"journal":{"name":"Int. J. Nat. Comput. Res.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nat. Comput. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijncr.2014040103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The Proportional Integral Derivative (PID) controller is the most widely used industrial device to monitoring and controlling processes. There are numerous methods for estimating the controller parameters, in general, resolving particular cases. Current trends in parameter estimation minimize an integral performance criterion. Therefore, the calculation of the controller parameters is proposed as an optimization problem. Although there are alternatives to the traditional rules of tuning, there is not yet a study showing that the use of heuristic algorithms it is indeed better than using the classic methods of optimal tuning. In this paper, the evolutionary algorithm MAGO is used as a tool to optimize the controller parameters. The procedure is applied to a range of standard plants modeled as a Second Order System plus Time Delay. Better results than traditional methods of optimal tuning, regardless of the operating mode of the controller, are yielded.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于进化算法的SOSPD控制器整定
比例积分导数(PID)控制器是工业中应用最广泛的过程监控装置。估计控制器参数的方法有很多,一般来说,解决特殊情况。当前参数估计的趋势是最小化整体性能准则。因此,控制器参数的计算被提出为一个优化问题。虽然传统的调优规则有很多替代方法,但目前还没有研究表明启发式算法的使用确实比经典的最佳调优方法更好。本文采用进化算法MAGO作为优化控制器参数的工具。该方法被应用于一系列标准工厂的二阶系统加时滞模型。与传统的最优调谐方法相比,无论控制器的工作模式如何,都产生了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insights Into Incorporating Trustworthiness and Ethics in AI Systems With Explainable AI Concept Drift Adaptation in Intrusion Detection Systems Using Ensemble Learning Natural Computing of Human Facial Emotion Using Multi-Learning Fuzzy Approach Detection of Small Oranges Using YOLO v3 Feature Pyramid Mechanism Performance Parameter Evaluation of 7nm FinFET by Tuning Metal Work Function and High K Dielectrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1