Object Tracking by Multiple State Management and Eigenbackground Segmentation

G. M. Freitas, C. L. Tozzi
{"title":"Object Tracking by Multiple State Management and Eigenbackground Segmentation","authors":"G. M. Freitas, C. L. Tozzi","doi":"10.4018/jncr.2010100103","DOIUrl":null,"url":null,"abstract":"This paper presents a multiple target tracking system through a fixed video camera, based on approaches found in literature. The proposed system is composed of three steps: foreground identification through background subtraction techniques; object association through color, area and centroid position matching, by using the Kalman filter to estimate the object’s position in the next frame; object classification according to an object management system. The obtained results showed that the proposed tracking system was able to recognize and track objects in movement on videos, as well as dealing with occlusions and separations, while encouraging future studies in its application on real time security systems.","PeriodicalId":369881,"journal":{"name":"Int. J. Nat. Comput. Res.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nat. Comput. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jncr.2010100103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper presents a multiple target tracking system through a fixed video camera, based on approaches found in literature. The proposed system is composed of three steps: foreground identification through background subtraction techniques; object association through color, area and centroid position matching, by using the Kalman filter to estimate the object’s position in the next frame; object classification according to an object management system. The obtained results showed that the proposed tracking system was able to recognize and track objects in movement on videos, as well as dealing with occlusions and separations, while encouraging future studies in its application on real time security systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多状态管理和特征背景分割的目标跟踪
本文在文献研究的基础上,提出了一种基于固定摄像机的多目标跟踪系统。该系统由三个步骤组成:通过背景减法技术识别前景;通过颜色、面积和质心位置匹配进行目标关联,通过卡尔曼滤波估计目标在下一帧中的位置;对象分类根据对象管理系统。结果表明,所提出的跟踪系统能够识别和跟踪视频中的运动物体,并能够处理遮挡和分离,同时鼓励未来在实时安全系统中的应用研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insights Into Incorporating Trustworthiness and Ethics in AI Systems With Explainable AI Concept Drift Adaptation in Intrusion Detection Systems Using Ensemble Learning Natural Computing of Human Facial Emotion Using Multi-Learning Fuzzy Approach Detection of Small Oranges Using YOLO v3 Feature Pyramid Mechanism Performance Parameter Evaluation of 7nm FinFET by Tuning Metal Work Function and High K Dielectrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1