Fault Detection in Solar PV Systems Using Hypothesis Testing

F. Harrou, B. Taghezouit, Benamar Bouyeddou, Ying Sun, A. Arab
{"title":"Fault Detection in Solar PV Systems Using Hypothesis Testing","authors":"F. Harrou, B. Taghezouit, Benamar Bouyeddou, Ying Sun, A. Arab","doi":"10.1109/INDIN45523.2021.9557582","DOIUrl":null,"url":null,"abstract":"The demand for solar energy has rapidly increased throughout the world in recent years. However, anomalies in photovoltaic (PV) plants can reduce performances and result in serious consequences. Developing reliable statistical approaches able to detect anomalies in PV plants is vital to improving the management of these plants. Here, we present a statistical approach for detecting anomalies in the DC part of PV plants and partial shading. Firstly, we model the monitored PV plant. Then, we employ a generalized likelihood ratio test, which is a powerful anomaly detection tool, to check the residuals from the model and reveal anomalies in the supervised PV array. The proposed strategy is illustrated via actual measurements from a 9.54 PV plant.","PeriodicalId":370921,"journal":{"name":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN45523.2021.9557582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for solar energy has rapidly increased throughout the world in recent years. However, anomalies in photovoltaic (PV) plants can reduce performances and result in serious consequences. Developing reliable statistical approaches able to detect anomalies in PV plants is vital to improving the management of these plants. Here, we present a statistical approach for detecting anomalies in the DC part of PV plants and partial shading. Firstly, we model the monitored PV plant. Then, we employ a generalized likelihood ratio test, which is a powerful anomaly detection tool, to check the residuals from the model and reveal anomalies in the supervised PV array. The proposed strategy is illustrated via actual measurements from a 9.54 PV plant.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于假设检验的太阳能光伏系统故障检测
近年来,全世界对太阳能的需求迅速增加。然而,光伏电站的异常会降低性能并导致严重后果。开发能够检测光伏电站异常的可靠统计方法对于改善这些电站的管理至关重要。在这里,我们提出了一种统计方法来检测光伏电站直流部分和部分遮阳的异常。首先,对监测的光伏电站进行建模。然后,我们使用了一种强大的异常检测工具——广义似然比检验来检查模型的残差,并揭示监督光伏阵列的异常。所提出的策略通过9.54光伏电站的实际测量来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault Classification for Wind Turbine Benchmark Model Based on Hilbert-Huang Transformation and Support Vector Machine Strategies [INDIN 2021 Front cover] Synergetic Control of Fixed-wing UAVs in the Presence of Wind Disturbances From Face to Face to Hybrid Teaching: an Experience on Process Plant Automation Laboratory Course during Global Pandemic Towards Policy-based Task Self-Reallocation in Dynamic Edge Computing Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1