Efficient distribution-free learning of probabilistic concepts

M. Kearns, R. Schapire
{"title":"Efficient distribution-free learning of probabilistic concepts","authors":"M. Kearns, R. Schapire","doi":"10.1109/FSCS.1990.89557","DOIUrl":null,"url":null,"abstract":"A model of machine learning in which the concept to be learned may exhibit uncertain or probabilistic behavior is investigated. Such probabilistic concepts (or p-concepts) may arise in situations such as weather prediction, where the measured variables and their accuracy are insufficient to determine the outcome with certainty. It is required that learning algorithms be both efficient and general in the sense that they perform well for a wide class of p-concepts and for any distribution over the domain. Many efficient algorithms for learning natural classes of p-concepts are given, and an underlying theory of learning p-concepts is developed in detail.<<ETX>>","PeriodicalId":271949,"journal":{"name":"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"458","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSCS.1990.89557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 458

Abstract

A model of machine learning in which the concept to be learned may exhibit uncertain or probabilistic behavior is investigated. Such probabilistic concepts (or p-concepts) may arise in situations such as weather prediction, where the measured variables and their accuracy are insufficient to determine the outcome with certainty. It is required that learning algorithms be both efficient and general in the sense that they perform well for a wide class of p-concepts and for any distribution over the domain. Many efficient algorithms for learning natural classes of p-concepts are given, and an underlying theory of learning p-concepts is developed in detail.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
概率概念的有效无分布学习
研究了一种机器学习模型,其中待学习的概念可能表现出不确定或概率行为。这种概率概念(或p-概念)可能出现在天气预报等情况下,其中测量的变量及其准确性不足以确定结果。它要求学习算法既有效又通用,因为它们在广泛的p-概念类别和域上的任何分布上都表现良好。本文给出了许多学习自然p-概念类的有效算法,并详细地发展了学习p-概念的基本理论
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online algorithms for finger searching Multiple non-interactive zero knowledge proofs based on a single random string Simple construction of almost k-wise independent random variables On the diameter of finite groups Drawing graphs in the plane with high resolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1