A Stability Analysis Tool for Bulk Power Systems Using Black-Box Models of Inverter-based Resources

Dongsen Sun, Hanchao Liu, Maozhong Gong
{"title":"A Stability Analysis Tool for Bulk Power Systems Using Black-Box Models of Inverter-based Resources","authors":"Dongsen Sun, Hanchao Liu, Maozhong Gong","doi":"10.1109/IAS54023.2022.9940032","DOIUrl":null,"url":null,"abstract":"This paper presents a small-signal stability analysis tool for large-scale power systems with high penetration of inverter-based resources (IBRs). Firstly, a network transfer function matrix (NTFM), which represents the information of the system topology, transmission lines, loads, IBRs locations, etc., is derived to model the entire power system network. Secondly, small-signal perturbation method is applied to obtain the sequence impedance/admittance responses of IBRs considering the frequency cross-coupling effects. With the obtained NTFM as well as IBRs' models, a multi-input, multi-output (MIMO) feedback system is constructed, and the generalized Nyquist criterion (GNC)-based stability method is employed to analyze the stability of the entire power system. Different testing cases based on a modified IEEE-14 bus system are leveraged to verify the proposed stability analysis tool.","PeriodicalId":193587,"journal":{"name":"2022 IEEE Industry Applications Society Annual Meeting (IAS)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Industry Applications Society Annual Meeting (IAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS54023.2022.9940032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a small-signal stability analysis tool for large-scale power systems with high penetration of inverter-based resources (IBRs). Firstly, a network transfer function matrix (NTFM), which represents the information of the system topology, transmission lines, loads, IBRs locations, etc., is derived to model the entire power system network. Secondly, small-signal perturbation method is applied to obtain the sequence impedance/admittance responses of IBRs considering the frequency cross-coupling effects. With the obtained NTFM as well as IBRs' models, a multi-input, multi-output (MIMO) feedback system is constructed, and the generalized Nyquist criterion (GNC)-based stability method is employed to analyze the stability of the entire power system. Different testing cases based on a modified IEEE-14 bus system are leveraged to verify the proposed stability analysis tool.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于逆变器资源黑盒模型的大容量电力系统稳定性分析工具
本文提出了一种适用于具有高逆变器资源渗透率的大型电力系统的小信号稳定性分析工具。首先,推导了代表系统拓扑结构、输电线路、负荷、ibr位置等信息的网络传递函数矩阵(NTFM),对整个电力系统网络进行建模。其次,采用小信号摄动法获得了考虑频率交叉耦合效应的IBRs序列阻抗/导纳响应;利用得到的NTFM模型和IBRs模型,构建了多输入多输出(MIMO)反馈系统,并采用基于广义Nyquist准则(GNC)的稳定性方法分析了整个电力系统的稳定性。利用基于改进的IEEE-14总线系统的不同测试用例来验证所提出的稳定性分析工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Testing the resistance of conductive gloves for the evaluation of the efficiency of clothing protecting against induced currents Hybrid Machine Learning-based Intelligent Distance Protection and Control Schemes with Fault and Zonal Classification Capabilities for Grid-connected Wind Farms Hardware in the Loop Testing of Main and Backup Protection Scheme for Systems with High Penetration of Inverter-Based Resources Predictive Control of Seven Level Multi-level Inverter Based Single Phase Shunt Active Filter Influence of Ageing on Properties of Insulating Oil in In-Service Transformer and Reactors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1