DCT Based Facial Feature Extraction

H.C. Akakin, B. Sankur
{"title":"DCT Based Facial Feature Extraction","authors":"H.C. Akakin, B. Sankur","doi":"10.1109/SIU.2006.1659699","DOIUrl":null,"url":null,"abstract":"In this paper we introduced an automatic landmarking method for near-frontal face images based on DCT coefficients. The face information is provided as 480times640 gray-level images with 3D scene depth data. Range data is used to eliminate the background data from the face. The proposed facial landmarking algorithm uses a coarse-to-fine searching algorithm. In coarse level the images are downsampled to 80times60 pixels resolution. Both in coarse and fine levels SVM classifiers are trained using the DCT coefficients extracted from the manually landmarked training data. Coarse level candidate facial points are searched within the whole face image. Once the candidate locations are established, we revert back to the higher resolution image and refine the accuracy by using search windows around the coarse landmark locations","PeriodicalId":415037,"journal":{"name":"2006 IEEE 14th Signal Processing and Communications Applications","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 14th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2006.1659699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we introduced an automatic landmarking method for near-frontal face images based on DCT coefficients. The face information is provided as 480times640 gray-level images with 3D scene depth data. Range data is used to eliminate the background data from the face. The proposed facial landmarking algorithm uses a coarse-to-fine searching algorithm. In coarse level the images are downsampled to 80times60 pixels resolution. Both in coarse and fine levels SVM classifiers are trained using the DCT coefficients extracted from the manually landmarked training data. Coarse level candidate facial points are searched within the whole face image. Once the candidate locations are established, we revert back to the higher resolution image and refine the accuracy by using search windows around the coarse landmark locations
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于DCT的人脸特征提取
本文提出了一种基于DCT系数的近正面人脸图像自动标记方法。人脸信息以480 × 640灰度图像的形式提供,具有3D场景深度数据。距离数据用于消除人脸的背景数据。提出的人脸标记算法采用一种从粗到精的搜索算法。在粗糙的水平下,图像被下采样到80乘以60像素的分辨率。支持向量机分类器在粗、细两个层次上都使用从人工标记训练数据中提取的DCT系数进行训练。在整个人脸图像中搜索粗级候选人脸点。一旦确定候选位置,我们将恢复到更高分辨率的图像,并通过使用粗糙地标位置周围的搜索窗口来提高精度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Peer-to-Peer Multipoint Video Conferencing Using Layered Video Determination of Product Surface Quality Watermarking Tools for Turkish Texts By Using Darlington Topology Improvement of In-Band Gain for the Log Domain Filters Dual Wideband Antenna Analysis for Linear FMCW Radar Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1