High Continuity Basis’s Impact on Continuous Global L2 (CGL2) Recovery

T. Kvamsdal, A. Abdulhaque, M. Kumar, K. Johannessen, A. Kvarving, K. Okstad
{"title":"High Continuity Basis’s Impact on Continuous Global L2 (CGL2) Recovery","authors":"T. Kvamsdal, A. Abdulhaque, M. Kumar, K. Johannessen, A. Kvarving, K. Okstad","doi":"10.23967/admos.2023.044","DOIUrl":null,"url":null,"abstract":"In the recovery-based estimates method, we employ a projection technique to recover a post-processed quantity (usually the stresses or the gradient computed from the FE-approximation). The error is estimated by taking the difference between the recovered quantity and the FE-solution. An easy procedure to implement is the continuous global L2 (CGL2) recovery initially used for a posteriori error estimation by Zienkiewicz and Zhu [1]. Kumar, Kvamsdal and Johannessen [2] developed CGL2 and Superconvergent Patch Recovery (SPR) error estimation methods applicable for adaptive refinement using LR B-splines [3] and observed very good results for both the CGL2 and the SPR recovery technique. However, Cai and Zhang reported in [4] a case of malfunction for the CGL2-recovery applied to second order triangular and tetrahedral Lagrange finite element. Here we will start out by presenting a motivational example that illustrates the benefits of using high regularity splines in the CGL2 based gradient recovery procedure compared to using the classical Lagrange FEM basis functions. We will then show the performance on some benchmark problems comparing the use of splines","PeriodicalId":414984,"journal":{"name":"XI International Conference on Adaptive Modeling and Simulation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"XI International Conference on Adaptive Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/admos.2023.044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the recovery-based estimates method, we employ a projection technique to recover a post-processed quantity (usually the stresses or the gradient computed from the FE-approximation). The error is estimated by taking the difference between the recovered quantity and the FE-solution. An easy procedure to implement is the continuous global L2 (CGL2) recovery initially used for a posteriori error estimation by Zienkiewicz and Zhu [1]. Kumar, Kvamsdal and Johannessen [2] developed CGL2 and Superconvergent Patch Recovery (SPR) error estimation methods applicable for adaptive refinement using LR B-splines [3] and observed very good results for both the CGL2 and the SPR recovery technique. However, Cai and Zhang reported in [4] a case of malfunction for the CGL2-recovery applied to second order triangular and tetrahedral Lagrange finite element. Here we will start out by presenting a motivational example that illustrates the benefits of using high regularity splines in the CGL2 based gradient recovery procedure compared to using the classical Lagrange FEM basis functions. We will then show the performance on some benchmark problems comparing the use of splines
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高连续性基础对连续全局L2 (CGL2)恢复的影响
在基于恢复的估计方法中,我们采用投影技术来恢复后处理量(通常是由fe近似计算的应力或梯度)。误差的估计是取回收量与fe溶液的差值。一个容易实现的过程是连续全局L2 (CGL2)恢复,最初由Zienkiewicz和Zhu[1]用于后验误差估计。Kumar, Kvamsdal和Johannessen[2]开发了CGL2和超收敛补丁恢复(Superconvergent Patch Recovery, SPR)误差估计方法,适用于使用LR b样条进行自适应精化[3],并观察到CGL2和SPR恢复技术都取得了非常好的结果。然而,Cai和Zhang在[4]中报道了应用于二阶三角形和四面体拉格朗日有限元的CGL2-recovery出现故障的情况。在这里,我们将首先提出一个激励的例子,说明在基于CGL2的梯度恢复过程中与使用经典拉格朗日有限元基函数相比,使用高正则样条的好处。然后,我们将在一些基准问题上展示使用样条的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Error Estimation for the Material Point and Particle in Cell Methods Dimension Reduction of Dynamic Superresolution and Application to Cell Tracking in PET Dimensionality reduction and physics-based manifold learning for parametric models in biomechanics and tissue engineering Modelling and Simulating Cities with Digital Twins The use of IoT technologies for advanced risk management in tailings dams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1