Block-based attractor coding: potential and comparison to vector quantization

T. Ramstad, S. Lepsøy
{"title":"Block-based attractor coding: potential and comparison to vector quantization","authors":"T. Ramstad, S. Lepsøy","doi":"10.1109/ACSSC.1993.342362","DOIUrl":null,"url":null,"abstract":"The paper presents a simple fractal or attractor coder model that has a very fast decoding algorithm and lends itself to comparisons with vector quantization (VQ) of the mean-gain-shape (MGSVQ) type. In fractal theory the transmission of the codebook is somewhat concealed. In our simple model the codebook is explicitly transmitted although with a double role. The main difference between MGSVQ and the fractal coder is that the codebook in MSGV is as statistically optimized from a set of training data whereas it is derived directly from the image to be coded for the fractal coder, and therefore can be viewed as adaptive. Experimental comparisons are given.<<ETX>>","PeriodicalId":266447,"journal":{"name":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1993.342362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The paper presents a simple fractal or attractor coder model that has a very fast decoding algorithm and lends itself to comparisons with vector quantization (VQ) of the mean-gain-shape (MGSVQ) type. In fractal theory the transmission of the codebook is somewhat concealed. In our simple model the codebook is explicitly transmitted although with a double role. The main difference between MGSVQ and the fractal coder is that the codebook in MSGV is as statistically optimized from a set of training data whereas it is derived directly from the image to be coded for the fractal coder, and therefore can be viewed as adaptive. Experimental comparisons are given.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于块的吸引子编码:潜力和矢量量化的比较
本文提出了一个简单的分形或吸引子编码器模型,该模型具有非常快的解码算法,并可与平均增益形状(MGSVQ)类型的矢量量化(VQ)进行比较。在分形理论中,密码本的传输在某种程度上是隐蔽的。在我们的简单模型中,密码本是显式传输的,尽管具有双重角色。MGSVQ和分形编码器之间的主要区别在于,MSGV中的码本是根据一组训练数据进行统计优化的,而它直接来自要为分形编码器编码的图像,因此可以视为自适应。并进行了实验比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimating error diffusion kernel from error diffused images Optical-to-SAR image registration using the active contour model Efficient organization of large ship radar databases using wavelets and structured vector quantization Signal processing using the generalized Taylor series expansion Evaluation of a model based data fusion algorithm with multi-mode OTHR data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1