AIggregate: A Machine Learning Approach for Classifying Micelle Shape

Alkiviadis Mertzios, K. Papavasileiou, L. Peristeras, George Giannakopoulos
{"title":"AIggregate: A Machine Learning Approach for Classifying Micelle Shape","authors":"Alkiviadis Mertzios, K. Papavasileiou, L. Peristeras, George Giannakopoulos","doi":"10.1145/3549737.3549799","DOIUrl":null,"url":null,"abstract":"In this work we develop AIggregate, a machine learning tool for classifying the shapes of micelles, which are clusters of surfactant molecules self assembled in aqueous solutions due to their unique amphiphilic character. For the majority of these systems, as the concentration of the surfactant increases, the micellar shape changes from spherical to elongated at a specific value defining the second critical micellar concentration (CMC). Known methods aiming to classify the micelles’ shape and to specify the second CMC with molecular modeling use heuristic approaches. These are based on shape parameters like asphericity, acylindricity, and anisotropicity. We expand upon this approach by applying machine learning and deep learning architectures to classify the shape of molecular assemblies. To achieve our goal, AIggregate uses both a point cloud representation of the micelle, where each atom or group of atoms constitutes a point in the cloud, as well as shape parameters of the assembly. We found that these methods significantly improve classification accuracy over the heuristic approach, with the deep learning, point-cloud-based method offering the maximum efficiency among the examined methods.","PeriodicalId":306650,"journal":{"name":"Proceedings of the 12th Hellenic Conference on Artificial Intelligence","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th Hellenic Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3549737.3549799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we develop AIggregate, a machine learning tool for classifying the shapes of micelles, which are clusters of surfactant molecules self assembled in aqueous solutions due to their unique amphiphilic character. For the majority of these systems, as the concentration of the surfactant increases, the micellar shape changes from spherical to elongated at a specific value defining the second critical micellar concentration (CMC). Known methods aiming to classify the micelles’ shape and to specify the second CMC with molecular modeling use heuristic approaches. These are based on shape parameters like asphericity, acylindricity, and anisotropicity. We expand upon this approach by applying machine learning and deep learning architectures to classify the shape of molecular assemblies. To achieve our goal, AIggregate uses both a point cloud representation of the micelle, where each atom or group of atoms constitutes a point in the cloud, as well as shape parameters of the assembly. We found that these methods significantly improve classification accuracy over the heuristic approach, with the deep learning, point-cloud-based method offering the maximum efficiency among the examined methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于胶束形状分类的机器学习方法
在这项工作中,我们开发了AIggregate,这是一个用于分类胶束形状的机器学习工具,胶束是表面活性剂分子的簇,由于其独特的两亲性而在水溶液中自组装。对于这些体系中的大多数,随着表面活性剂浓度的增加,胶束的形状从球形变为细长形,达到一个特定的值,该值定义了第二个临界胶束浓度(CMC)。已知的方法旨在对胶束的形状进行分类,并通过分子模型指定第二CMC,使用启发式方法。这些是基于形状参数,如非球面、非圆柱形和各向异性。我们通过应用机器学习和深度学习架构对分子组装的形状进行分类,扩展了这种方法。为了实现我们的目标,AIggregate使用胶束的点云表示,其中每个原子或原子组构成云中的一个点,以及组装的形状参数。我们发现,与启发式方法相比,这些方法显著提高了分类精度,其中深度学习、基于点云的方法在所研究的方法中效率最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementing the Adaptation Procedure in Misinformation Games Development of an electric car sharing system in a tourist area by using data driven tools: The idea of Erica project Domain-Specific Term Extraction: A Case Study on Greek Maritime Legal Texts Resource-effective exploration of tumor treatments with multi-scale simulations The Importance of Deciphering Tacit Knowledge in Apparel Product Development for Explainable AI: Proposed steps for increasing digitalization in the apparel industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1