Won-Young Lee, Seung-Hyun Lee, Mun-Suck Jang, Eung-Hyuk Lee
{"title":"A study on methods for improving the straightness of the intelligent walker to move on slope","authors":"Won-Young Lee, Seung-Hyun Lee, Mun-Suck Jang, Eung-Hyuk Lee","doi":"10.1109/URAI.2013.6677332","DOIUrl":null,"url":null,"abstract":"This paper suggests linearity enhancement algorithm for slope driving of Intelligent Walker. Intelligent Walker happens to get off track due to external forces from robot's weight and the degree of the slope while slope driving. In order to compensate this, this research used the controller that estimates the external forces according to the slope of road surface and adjusts it to the motor output. Also, through comparisons between targeted rotational angular velocity which the user inputs and its velocity of the robot, algorithm was applied which applies a weight to each shaft. As a result of applying the proposed correction controller to Intelligent Walker, it diverges in case of non-compensation experiments that deviates when moving, but it case of applying the ramp calibration algorithm, the deviation distance at max was within 5cm that it keeps safe driving, and change rate of deviation distance was also stabilized after 1m where no more changes occurred.","PeriodicalId":431699,"journal":{"name":"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URAI.2013.6677332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper suggests linearity enhancement algorithm for slope driving of Intelligent Walker. Intelligent Walker happens to get off track due to external forces from robot's weight and the degree of the slope while slope driving. In order to compensate this, this research used the controller that estimates the external forces according to the slope of road surface and adjusts it to the motor output. Also, through comparisons between targeted rotational angular velocity which the user inputs and its velocity of the robot, algorithm was applied which applies a weight to each shaft. As a result of applying the proposed correction controller to Intelligent Walker, it diverges in case of non-compensation experiments that deviates when moving, but it case of applying the ramp calibration algorithm, the deviation distance at max was within 5cm that it keeps safe driving, and change rate of deviation distance was also stabilized after 1m where no more changes occurred.