Fitting a Normal Distribution to Interval and Fuzzy Data

G. Xiang, V. Kreinovich, S. Ferson
{"title":"Fitting a Normal Distribution to Interval and Fuzzy Data","authors":"G. Xiang, V. Kreinovich, S. Ferson","doi":"10.1109/NAFIPS.2007.383901","DOIUrl":null,"url":null,"abstract":"In traditional statistical analysis, if we know that the distribution is normal, then the most popular way to estimate its mean a and standard deviation sigma from the data sample x1,..., xn is to equate a and sigma to the arithmetic mean and sample standard deviation of this sample. After this equation, we get the cumulative distribution function F(x) = phi (x-a/sigma) of the desired distribution. In many practical situations, we only know intervals [xi, xi] that contain the actual (unknown) values of xi or, more generally, a fuzzy number that describes xt. Different values of xt lead, in general, to different values of F(x). In this paper, we show how to compute, for every x, the resulting interval [F_(x),F(x)] of possible values of F(x) -or the corresponding fuzzy numbers.","PeriodicalId":292853,"journal":{"name":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2007.383901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In traditional statistical analysis, if we know that the distribution is normal, then the most popular way to estimate its mean a and standard deviation sigma from the data sample x1,..., xn is to equate a and sigma to the arithmetic mean and sample standard deviation of this sample. After this equation, we get the cumulative distribution function F(x) = phi (x-a/sigma) of the desired distribution. In many practical situations, we only know intervals [xi, xi] that contain the actual (unknown) values of xi or, more generally, a fuzzy number that describes xt. Different values of xt lead, in general, to different values of F(x). In this paper, we show how to compute, for every x, the resulting interval [F_(x),F(x)] of possible values of F(x) -or the corresponding fuzzy numbers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
区间和模糊数据的正态分布拟合
在传统的统计分析中,如果我们知道分布是正态分布,那么最常用的方法是从数据样本x1中估计其均值a和标准差sigma,…, xn等于a和等于该样本的算术平均值和样本标准差。在这个方程之后,我们得到期望分布的累积分布函数F(x) = (x-a/sigma)。在许多实际情况下,我们只知道区间[xi, xi]包含xi的实际(未知)值,或者更一般地说,包含描述xt的模糊数。通常,不同的xt值导致不同的F(x)值。在本文中,我们展示了如何计算,对于每一个x, F(x)的可能值的结果区间[F_(x),F(x)] -或相应的模糊数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neighbourhood Sets based on Web Usage Mining Design an Intelligent Neural-Fuzzy Controller for Hybrid Motorcycle Fuzzy ROI Based 2-D/3-D Registration for Kinetic Analysis after Anterior Cruciate Ligament Reconstruction About the Division Operator in a Possibilistic Database Framework A Fast Structural Optimization Technique for IDS Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1