Adaptive frameless rendering

Abhinav Dayal, Cliff Woolley, B. Watson, D. Luebke
{"title":"Adaptive frameless rendering","authors":"Abhinav Dayal, Cliff Woolley, B. Watson, D. Luebke","doi":"10.1145/1198555.1198763","DOIUrl":null,"url":null,"abstract":"We propose an adaptive form of frameless rendering with the potential to dramatically increase rendering speed over conventional interactive rendering approaches. Without the rigid sampling patterns of framed renderers, sampling and reconstruction can adapt with very fine granularity to spatio-temporal color change. A sampler uses closed-loop feedback to guide sampling toward edges or motion in the image. Temporally deep buffers store all the samples created over a short time interval for use in reconstruction and as sampler feedback. GPU-based reconstruction responds both to sampling density and space-time color gradients. Where the displayed scene is static, spatial color change dominates and older samples are given significant weight in reconstruction, resulting in sharper and eventually antialiased images. Where the scene is dynamic, more recent samples are emphasized, resulting in less sharp but more up-to-date images. We also use sample reprojection to improve reconstruction and guide sampling toward occlusion edges, undersampled regions, and specular highlights. In simulation our frameless renderer requires an order of magnitude fewer samples than traditional rendering of similar visual quality (as measured by RMS error), while introducing overhead amounting to 15% of computation time.","PeriodicalId":192758,"journal":{"name":"ACM SIGGRAPH 2005 Courses","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2005 Courses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1198555.1198763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose an adaptive form of frameless rendering with the potential to dramatically increase rendering speed over conventional interactive rendering approaches. Without the rigid sampling patterns of framed renderers, sampling and reconstruction can adapt with very fine granularity to spatio-temporal color change. A sampler uses closed-loop feedback to guide sampling toward edges or motion in the image. Temporally deep buffers store all the samples created over a short time interval for use in reconstruction and as sampler feedback. GPU-based reconstruction responds both to sampling density and space-time color gradients. Where the displayed scene is static, spatial color change dominates and older samples are given significant weight in reconstruction, resulting in sharper and eventually antialiased images. Where the scene is dynamic, more recent samples are emphasized, resulting in less sharp but more up-to-date images. We also use sample reprojection to improve reconstruction and guide sampling toward occlusion edges, undersampled regions, and specular highlights. In simulation our frameless renderer requires an order of magnitude fewer samples than traditional rendering of similar visual quality (as measured by RMS error), while introducing overhead amounting to 15% of computation time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应无帧渲染
我们提出了一种自适应的无帧渲染形式,与传统的交互式渲染方法相比,它有可能显著提高渲染速度。没有框架渲染器的刚性采样模式,采样和重构可以以非常细的粒度适应时空的颜色变化。采样器使用闭环反馈来引导采样到图像的边缘或运动。临时深缓冲区存储在短时间间隔内创建的所有样本,用于重建和采样器反馈。基于gpu的重构响应采样密度和时空颜色梯度。在显示的场景是静态的情况下,空间颜色变化占主导地位,旧的样本在重建中被赋予重要的权重,从而产生更清晰和最终抗锯齿的图像。如果场景是动态的,则强调最近的样本,从而产生不那么清晰但更最新的图像。我们还使用样本重投影来改进重建,并引导采样到遮挡边缘、欠采样区域和高光。在模拟中,我们的无帧渲染器需要的样本数量比具有相似视觉质量的传统渲染(以均方根误差衡量)少一个数量级,同时引入的开销相当于计算时间的15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling with implicit surfaces that interpolate The invisible actor: Copyright restrictions prevent ACM from providing the full text for this work. Session details: Spatial augmented reality: a modern approach to augmented reality Session details: Pre-computed radiance transfer: theory and practice What can we measure?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1