Loop and data transformations for sparse matrix code

Anand Venkat, Mary W. Hall, M. Strout
{"title":"Loop and data transformations for sparse matrix code","authors":"Anand Venkat, Mary W. Hall, M. Strout","doi":"10.1145/2737924.2738003","DOIUrl":null,"url":null,"abstract":"This paper introduces three new compiler transformations for representing and transforming sparse matrix computations and their data representations. In cooperation with run-time inspection, our compiler derives transformed matrix representations and associated transformed code to implement a variety of representations targeting different architecture platforms. This systematic approach to combining code and data transformations on sparse computations, which extends a polyhedral transformation and code generation framework, permits the compiler to compose these transformations with other transformations to generate code that is on average within 5% and often exceeds manually-tuned, high-performance sparse matrix libraries CUSP and OSKI. Additionally, the compiler-generated inspector codes are on average 1.5 faster than OSKI and perform comparably to CUSP, respectively.","PeriodicalId":104101,"journal":{"name":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"os-37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2737924.2738003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

Abstract

This paper introduces three new compiler transformations for representing and transforming sparse matrix computations and their data representations. In cooperation with run-time inspection, our compiler derives transformed matrix representations and associated transformed code to implement a variety of representations targeting different architecture platforms. This systematic approach to combining code and data transformations on sparse computations, which extends a polyhedral transformation and code generation framework, permits the compiler to compose these transformations with other transformations to generate code that is on average within 5% and often exceeds manually-tuned, high-performance sparse matrix libraries CUSP and OSKI. Additionally, the compiler-generated inspector codes are on average 1.5 faster than OSKI and perform comparably to CUSP, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏矩阵代码的循环和数据转换
本文介绍了用于表示和转换稀疏矩阵计算及其数据表示的三种新的编译器变换。在运行时检查的配合下,我们的编译器派生转换后的矩阵表示和相关的转换后的代码,以实现针对不同体系结构平台的各种表示。这种将代码和数据转换结合在稀疏计算上的系统方法,扩展了多面体转换和代码生成框架,允许编译器将这些转换与其他转换组合在一起,以生成平均在5%以内的代码,并且通常超过手动调优的高性能稀疏矩阵库CUSP和OSKI。此外,编译器生成的检查器代码比OSKI平均快1.5,执行速度与CUSP相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic partial order reduction for relaxed memory models Static detection of asymptotic performance bugs in collection traversals Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation Efficient execution of recursive programs on commodity vector hardware KJS: a complete formal semantics of JavaScript
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1