{"title":"Loop and data transformations for sparse matrix code","authors":"Anand Venkat, Mary W. Hall, M. Strout","doi":"10.1145/2737924.2738003","DOIUrl":null,"url":null,"abstract":"This paper introduces three new compiler transformations for representing and transforming sparse matrix computations and their data representations. In cooperation with run-time inspection, our compiler derives transformed matrix representations and associated transformed code to implement a variety of representations targeting different architecture platforms. This systematic approach to combining code and data transformations on sparse computations, which extends a polyhedral transformation and code generation framework, permits the compiler to compose these transformations with other transformations to generate code that is on average within 5% and often exceeds manually-tuned, high-performance sparse matrix libraries CUSP and OSKI. Additionally, the compiler-generated inspector codes are on average 1.5 faster than OSKI and perform comparably to CUSP, respectively.","PeriodicalId":104101,"journal":{"name":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"os-37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2737924.2738003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95
Abstract
This paper introduces three new compiler transformations for representing and transforming sparse matrix computations and their data representations. In cooperation with run-time inspection, our compiler derives transformed matrix representations and associated transformed code to implement a variety of representations targeting different architecture platforms. This systematic approach to combining code and data transformations on sparse computations, which extends a polyhedral transformation and code generation framework, permits the compiler to compose these transformations with other transformations to generate code that is on average within 5% and often exceeds manually-tuned, high-performance sparse matrix libraries CUSP and OSKI. Additionally, the compiler-generated inspector codes are on average 1.5 faster than OSKI and perform comparably to CUSP, respectively.