Test-bed implementation of iterative interference alignment and power control for wireless MIMO interference networks

N. N. Moghadam, H. Farhadi, P. Zetterberg, M. Skoglund
{"title":"Test-bed implementation of iterative interference alignment and power control for wireless MIMO interference networks","authors":"N. N. Moghadam, H. Farhadi, P. Zetterberg, M. Skoglund","doi":"10.1109/SPAWC.2014.6941514","DOIUrl":null,"url":null,"abstract":"This paper presents for the first time the test-bed implementation of an iterative interference alignment and power control algorithm for downlink transmission in a multiple-input multiple-output (MIMO) cellular network. The network is composed of three cells where within each cell one base station (BS) communicates with one mobile station (MS). Each terminal is equipped with two antennas. All the BSs transmit at the same time and the same frequency band. Transmitter beamforming vectors and receiver filtering vectors are computed according to the interference alignment concept, and power control is performed to guarantee successful communication of each BS-MS pair at a desired fixed rate. The indoor measurements performed on an universal software radio peripheral (USRP) based test-bed, show that the power can be reduced by at least 4 dB, 90% of the time, while at the same time reducing the bit-error-rate (BER).","PeriodicalId":420837,"journal":{"name":"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"os-42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2014.6941514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents for the first time the test-bed implementation of an iterative interference alignment and power control algorithm for downlink transmission in a multiple-input multiple-output (MIMO) cellular network. The network is composed of three cells where within each cell one base station (BS) communicates with one mobile station (MS). Each terminal is equipped with two antennas. All the BSs transmit at the same time and the same frequency band. Transmitter beamforming vectors and receiver filtering vectors are computed according to the interference alignment concept, and power control is performed to guarantee successful communication of each BS-MS pair at a desired fixed rate. The indoor measurements performed on an universal software radio peripheral (USRP) based test-bed, show that the power can be reduced by at least 4 dB, 90% of the time, while at the same time reducing the bit-error-rate (BER).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无线MIMO干扰网络迭代干扰对准与功率控制的试验台实现
本文首次提出了一种多输入多输出(MIMO)蜂窝网络下行传输的迭代干扰对准和功率控制算法的试验台实现。该网络由三个小区组成,每个小区内有一个基站(BS)与一个移动站(MS)通信。每个终端配备两根天线。所有的广播电台在同一时间、同一频带发射。根据干扰对准概念计算发射机波束形成矢量和接收机滤波矢量,并进行功率控制,以保证每个BS-MS对以期望的固定速率成功通信。在基于通用软件无线电外设(USRP)的试验台上进行的室内测量表明,在90%的情况下,功率可以降低至少4 dB,同时降低误码率(BER)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unifying viewpoints on distributed asynchronous optimization for MISO interference channels Sparse channel estimation including the impact of the transceiver filters with application to OFDM Towards a principled approach to designing distributed MAC protocols Information rates employing 1-bit quantization and oversampling at the receiver Suppression of pilot-contamination in massive MIMO systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1