The influence of the basin structure of Boolean networks on their long range correlated dynamics

Peng Xu, Xianghong Wang, Wenbin Liu
{"title":"The influence of the basin structure of Boolean networks on their long range correlated dynamics","authors":"Peng Xu, Xianghong Wang, Wenbin Liu","doi":"10.1109/ISB.2012.6314106","DOIUrl":null,"url":null,"abstract":"It has been known for quite some time that the 1 / f dynamics play a vital role in living organisms. Recently we studied the long-range correlated dynamics of Boolean networks, and found that some networks could present the 1 / f dynamics while others couldn't. An important question is what kind of networks can generate such dynamics? In this paper, we investigate this issue based on the attractor structure of Boolean networks. We find that multiple attractor networks prefer to generate the 1 / f dynamics and systems with large basin entropy tend to sustain such dynamics in a wide noise range. Models for eight real genetic networks also partially support these observations.","PeriodicalId":224011,"journal":{"name":"2012 IEEE 6th International Conference on Systems Biology (ISB)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 6th International Conference on Systems Biology (ISB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISB.2012.6314106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

It has been known for quite some time that the 1 / f dynamics play a vital role in living organisms. Recently we studied the long-range correlated dynamics of Boolean networks, and found that some networks could present the 1 / f dynamics while others couldn't. An important question is what kind of networks can generate such dynamics? In this paper, we investigate this issue based on the attractor structure of Boolean networks. We find that multiple attractor networks prefer to generate the 1 / f dynamics and systems with large basin entropy tend to sustain such dynamics in a wide noise range. Models for eight real genetic networks also partially support these observations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
布尔网络盆地结构对其远程相关动力学的影响
人们很早就知道,1 / f动力学在生物体中起着至关重要的作用。近年来,我们对布尔网络的远程相关动力学进行了研究,发现一些网络可以呈现1 / f动态,而另一些网络则不能。一个重要的问题是,什么样的网络可以产生这样的动态?本文基于布尔网络的吸引子结构研究了这一问题。我们发现,多吸引子网络倾向于产生1 / f动态,而具有大流域熵的系统倾向于在宽噪声范围内维持这种动态。八个真实遗传网络的模型也部分支持这些观察结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fixed-point blind source extraction algorithm and its application to ECG data analysis Comparing two models based on the transcriptional regulation by KaiC of cyanobacteria rhythm Predicting protein complexes via the integration of multiple biological information Effective clustering of microRNA sequences by N-grams and feature weighting RNA-seq coverage effects on biological pathways and GO tag clouds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1